• Title/Summary/Keyword: stochastic optimization algorithm

Search Result 189, Processing Time 0.034 seconds

The Optimal Design of gas oven assembly line with the Simulation and Evolution Strategy (시물레이션과 진화 전략을 이용한 가스 오븐 조립라인의 최적 설계)

  • Kim, Kyung-Rok;Lee, Hong-Chul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.715-718
    • /
    • 2009
  • The assembly line is one of the typical process hard to analyze with mathematical methods including even stochastic approaches, because it includes many manual operations varying drastically depending on operators' skills. In this paper, we suggest the simulation optimization method to design the optimal assembly line of a gas oven. To achieve the optimal design, firstly, we modeled the real gas oven assembly line with actual data, such as assembly procedures, operation rules, and other input parameters and so on. Secondly, we build some alternatives to enhance the line performance based on business rules and other parameters. The DOE(Design Of Experiment) techniques were used for testing alternatives under various situations. Each alternatives performed optimization process with evolution strategy; one of the GA(Genetic Algorithm) techniques. As a result, we can make about 7% of throughputs up with the same time and cost. By this process, we expect the assembly line can obtain the solution compatible with their own problems.

  • PDF

An Informal Analysis of Diffusion, Global Optimization Properties in Langevine Competitive Learning Neural Network (Langevine 경쟁학습 신경회로망의 확산성과 대역 최적화 성질의 근사 해석)

  • Seok, Jin-Wuk;Cho, Seong-Won;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1344-1346
    • /
    • 1996
  • In this paper, we discuss an informal analysis of diffusion, global optimization properties of Langevine competitive learning neural network. In the view of the stochastic process, it is important that competitive learning gurantee an optimal solution for pattern recognition. We show that the binary reinforcement function in Langevine competitive learning is a brownian motion as Gaussian process, and construct the Fokker-Plank equation for the proposed neural network. Finally, we show that the informal analysis of the proposed algorithm has a possiblity of globally optimal. solution with the proper initial condition.

  • PDF

Optimal design of nonlinear damping system for seismically-excited adjacent structures using multi-objective genetic algorithm integrated with stochastic linearization method (추계학적 선형화 방법 및 다목적 유전자 알고리즘을 이용한 지진하중을 받는 인접 구조물에 대한 비선형 감쇠시스템의 최적 설계)

  • Ok, Seung-Yong;Song, Jun-Ho;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2007
  • Optimal design method of nonlinear damping system for seismic response control of adjacent structures is studied in this paper. The objective functions of the optimal design are defined by structural response and total amount of the dampers. In order to obtain a solution minimizing two mutually conflicting objective functions simultaneously, multi-objective optimization technique based on genetic algorithm is adopted. In addition, stochastic linearization method is embedded into the multi-objective framework to efficiently estimate the seismic responses of the adjacent structures interconnected by nonlinear hysteretic dampers without performing nonlinear time-history analyses. As a numerical example to demonstrate the effectiveness of the proposed technique, 20-story and 10-story buildings are considered and MR dampers of which hysteretic behaviors vary with the magnitude of the input voltage are considered as nonlinear hysteretic damper interconnecting two adjacent buildings. The proposed approach can provide the optimal number and capacities of the MR dampers, which turned out to be more economical than the uniform distribution system while maintaining similar control performance. The proposed damper system is verified to show more stable performance in terms of the pounding probability between two adjacent buildings. The applicability of the proposed method to the design problem for optimally placing semi-active control system is examined as well.

Dynamic Island Partition for Distribution System with Renewable Energy to Decrease Customer Interruption Cost

  • Zhu, Junpeng;Gu, Wei;Jiang, Ping;Song, Shan;Liu, Haitao;Liang, Huishi;Wu, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2146-2156
    • /
    • 2017
  • When a failure occurs in active distribution system, it will be isolated through the action of circuit breakers and sectionalizing switches. As a result, the network might be divided into several connected components, in which distributed generations could supply power for customers. Aimed at decreasing customer interruption cost, this paper proposes a theoretically optimal island partition model for such connected components, and a simplified but more practical model is also derived. The model aims to calculate a dynamic island partition schedule during the failure recovery time period, instead of a static islanding status. Fluctuation and stochastic characteristics of the renewable distributed generations and loads are considered, and the interruption cost functions of the loads are fitted. To solve the optimization model, a heuristic search algorithm based on the hill climbing method is proposed. The effectiveness of the proposed model and algorithm is evaluated by comparing with an existing static island partitioning model and intelligent algorithms, respectively.

A Stochastic Model for Virtual Data Generation of Crack Patterns in the Ceramics Manufacturing Process

  • Park, Youngho;Hyun, Sangil;Hong, Youn-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.596-600
    • /
    • 2019
  • Artificial intelligence with a sufficient amount of realistic big data in certain applications has been demonstrated to play an important role in designing new materials or in manufacturing high-quality products. To reduce cracks in ceramic products using machine learning, it is desirable to utilize big data in recently developed data-driven optimization schemes. However, there is insufficient big data for ceramic processes. Therefore, we developed a numerical algorithm to make "virtual" manufacturing data sets using indirect methods such as computer simulations and image processing. In this study, a numerical algorithm based on the random walk was demonstrated to generate images of cracks by adjusting the conditions of the random walk process such as the number of steps, changes in direction, and the number of cracks.

K-Way Graph Partitioning: A Semidefinite Programming Approach (Semidefinite Programming을 통한 그래프의 동시 분할법)

  • Jaehwan, Kim;Seungjin, Choi;Sung-Yang, Bang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.697-699
    • /
    • 2004
  • Despite many successful spectral clustering algorithm (based on the spectral decomposition of Laplacian(1) or stochastic matrix(2) ) there are several unsolved problems. Most spectral clustering Problems are based on the normalized of algorithm(3) . are close to the classical graph paritioning problem which is NP-hard problem. To get good solution in polynomial time. it needs to establish its convex form by using relaxation. In this paper, we apply a novel optimization technique. semidefinite programming(SDP). to the unsupervised clustering Problem. and present a new multiple Partitioning method. Experimental results confirm that the Proposed method improves the clustering performance. especially in the Problem of being mixed with non-compact clusters compared to the previous multiple spectral clustering methods.

  • PDF

LQG modeling and GA control of structures subjected to earthquakes

  • Chen, ZY;Jiang, Rong;Wang, Ruei-Yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.421-430
    • /
    • 2022
  • This paper addresses the stochastic control problem of robots within the framework of parameter uncertainty and uncertain noise covariance. First of all, an open circle deterministic trajectory optimization issue is explained without knowing the unequivocal type of the dynamical framework. Then, a Linear Quadratic Gaussian (LQG) controller is intended for the ostensible trajectory-dependent linearized framework, to such an extent that robust hereditary NN robotic controller made out of the Kalman filter and the fuzzy controller is blended to ensure the asymptotic stability of the non-continuous controlled frameworks. Applicability and performance of the proposed algorithm shown through simulation results in the complex systems which are demonstrate the feasible to improve the performance by the proposed approach.

Development of ESS Scheduling Algorithm to Maximize the Potential Profitability of PV Generation Supplier in South Korea

  • Kong, Junhyuk;Jufri, Fauzan Hanif;Kang, Byung O;Jung, Jaesung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2227-2235
    • /
    • 2018
  • Under the current policies and compensation rules in South Korea, Photovoltaic (PV) generation supplier can maximize the profit by combining PV generation with Energy Storage System (ESS). However, the existing operational strategy of ESS is not able to maximize the profit due to the limitation of ESS capacity. In this paper, new ESS scheduling algorithm is introduced by utilizing the System Marginal Price (SMP) and PV generation forecasting to maximize the profits of PV generation supplier. The proposed algorithm determines the charging time of ESS by ranking the charging schedule from low to high SMP when PV generation is more than enough to charge ESS. The discharging time of ESS is determined by ranking the discharging schedule from high to low SMP when ESS energy is not enough to maintain the discharging. To compensate forecasting error, the algorithm is updated every hour to apply the up-to-date information. The simulation is performed to verify the effectiveness of the proposed algorithm by using actual PV generation and ESS information.

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

The Optimization of Sizing and Topology Design for Drilling Machine by Genetic Algorithms (유전자 알고리즘에 의한 드릴싱 머신의 설계 최적화 연구)

  • Baek, Woon-Tae;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.24-29
    • /
    • 1997
  • Recently, Genetic Algorithm(GA), which is a stochastic direct search strategy that mimics the process of genetic evolution, is widely adapted into a search procedure for structural optimization. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA is very simple in their algorithms and there is no need of continuity of functions(or functionals) any more in GA. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher porbability of convergence to global optimum compared to traditional techniques which take one-point search method. The methods consist of three genetics opera- tions named selection, crossover and mutation. In this study, a method of finding the omtimum size and topology of drilling machine is proposed by using the GA, For rapid converge to optimum, elitist survival model,roulette wheel selection with limited candidates, and multi-point shuffle cross-over method are adapted. And pseudo object function, which is the combined form of object function and penalty function, is used to include constraints into fitness function. GA shows good results of weight reducing effect and convergency in optimal design of drilling machine.

  • PDF