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Abstract
Despite many successful spectral clustering algorithm(based on the spectral decomposition
of Laplacian(1], or stochastic matrix(2)), there are several unsolved problems. Most spectral
clustering problems are based on the jyummalized cu 2lgorithm(3], are close to
the classical graph paritioning problem which is NP-hard problem. To get good

solution in polynomial time,

it needs to establish its convex form by using
relaxation. In this paper, we apply a novel optimization technique,

semidefinite

programming(SDP), to the unsupervised clustering problem. and present a new
multiple partitioning method. Experimental results confirm that the proposed
method improves the clustering performance, especially in the problem of being
mixed with non-compact clusters, compared to the previous multiple spectral

clustering methods.

1. Introduction

Graph partitioning or cutting in an unsupervised
way has been the common goal of considerable
research in machine learning and pattern recognition.
Recently, spectral methods have become popular for
clustering tasks. This methods use eigenvectors of an
affinity matrix, derived from the distance between
points. Such methods, based on the spectral clustering,
have been successfully used in many applications such
as computer vision including image segmentation,
perceptual grouping, and circuit layout design etc.
Most of all spectral clustering methods are similar to
the ormalized cug @lgorithm[3]. And they are close
to the classical graph partitioning problem from
spectral graph theory[4]. The normalized cut algorithm
is specified in terms of a ratio between intra-cluster
and inter-cluster similarities of vertices, it is not only
a heuristic algorithm, but also NP-hard problem. In
this paper, we apply a novel optimization technique,

Semidefinite  programming 1© the unsupervised
graph partitioning problems, in order to obtain a
relaxation form of NP-hard graph partitioning

problems. Semidefinte programming has been used
to obtain  approximation results for  various

combinatorial problems, such as Max-Cut or Graph
Coloring. But this approach is defined over binary
decision variables. We present a new method that is
able to partition over multiple decision variables as
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well as Dbinary variables simultaneously. Our
optimization task has three tasks : First we obtain a
convex optimization problem through the semidefinite
relaxation. Second we use interior-point methods to
solve semidefinite programming in polynomial time.
Third, to achieve multiple graph partitioning, we
consider an algebraic property of the obtained primal
variable matrix. We compare our method with the
multiple spectral clustering algorithms described in the
paper[2], and confirm that our method improves the
clustering performance for non-compact data as well
as the other data.

2. Two-Way Grouping As Graph Partitioning

Consider a graph A V,E) with vertices 17 and
pairwise similarity values as edge weights . p
c Vx V—R!. The set i can be partitioned into two

coherent groups, §§, SJS =V, 9NS =@.by simply
cutting edges connecting the two parts. Represnting
such a partitioned group by an indicator vector
x={—1,+1}* a criterion for the bipartitioning can be
defined as the degree of dissimilarity between these
two pieces, can be computed as total weight of the
edges that have been removed. In graph theoretic
term, it is called the cut :

-
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Here, ; — p— wis the Laplacian matrix of the graph
G, D is the diagonal matrix with the elements g; ;)

Siievufs,j) and the matrix p={(y(;, j)} is the

affinity matrix for ¢ If ,(; H=( then ¢ has no
edge i The optimal bipartitioning of a graph is
equivalent to the minimization of cut value (1). So
coherent groups correspond to low value of the weight
function (S, S)- But, there is a problem like
unbalanced cut. Recently Shi and Malik[3] proposed
the following normalized cut criterion, in order to
avoid unbalanced partitions which are likely when

minimizing G«S,S) °
V= (—Lo 1 a @
Ne(S, S )=( w05 T s )iegles,u(z,f)

where the volume of a set gis volS=3]es i, ;)[2]
Above approach can be expressed to the following
classical combinatorial minimization problem with
balancing and integer constraints :

min % Lx, e %=0, x={—1,+1}". ©

where g=(1,...,1)7 But problem (3) is NP-hard
problem. So it is necessary to establish its convex
problem through relaxation.

3. Semidefinte Programming Approach

To obtain a semidefinte relaxation of the problem
(3) we linearize the cost function, and observe that
the convex hull of feasible points of the linearized
model is contained in the cone of semidefinite
matrices. After we replace the constraints by
quardratic ones, we obtain the relaxed problem with
respect to problem (3) :

zi=mex z,e’y, Z=L—yee"-yeS,. @

where g7 denotes the set of symmetric ,x ,matrices
which are positive semidefinite. Through the selfdual

property and pfinimax inequality[5], we can take the
following convex problem :

zy;=min gL+ X, eeT - X=0, (X)=1 ©

where y is a Lagrangian multiplier, XS Hence,
although the vector , is limited to the binary integer
values at the object function(3), matrix x is not
limited to the such a constraint (only thing we must
consider is that the matrix X IS positive
semidefinite)- Both optimization problems which are
primal(5) and dual(4), are convex problem. There they
vield  yo duglity gapr  z,—z2,~L+X"—eTy*=0- In
this paper, in order to obtain optimal primal and dual
solutions ( x* 7* y*), we use interior-points method.
The basic idea to find a solution is to solve this
system iteratively using Newton’s method. Typically,
a sequence of minimizers (X.Z3 is computed untill
the duality gap falls below some threshold o

4, K-Way Partitioning Algorithm via SDP

In this section, we describe our proposed multiple
graph partitioning method. Algorithm of our method
can be expressed in the following procedure :

Given a graph of V.'ertices v=v,,...,v,)} 0 R that
we want to cluster into p subgraphs :

®. Form the affinity matr.ix We R »» defined by .
=exp(— || vi—v; | /269 i i%j Whi=0-
(where the scaling parameter 2 controls the slope of

the decaying weight on an edge as a function of the
distance.)

®. Construct p is the diagonal matrix with the
elements  d(7, /) =3 jev uli, j)» the
matrix j—j—p (where p is the stochastic matrix,
D~ lwin [2]. j_ p is non-symmetric matrix, so we
make the matrix j to be symmetric.)

and construct

Q. Obtain the primal solution x*eS§7 through the
Sec. 3 and interior-points methods. Then x* can be
factored as X*=QAQ7T by spectral decomposition. We
form the matrix (CepR™*t from g defined by
M=[mq(l), ,,,'\/—,1—("34(’?)] in matrix the QA2
through the renormalization of pf/s rows to have unit
length. (where Q=[q® gW]er™n is orthogonal
, ie, satisfies QTQ=1 and A=dag(A?, ...,A ™) in
order as | W<y @< <p ™. The (real) numbers
A are eigenvalues of x)

@. Treating each row of x as a vertice defined in
the j dimensional space, cluster them into p cluster
via fuzzy C-means(with p known) or any other
algorithm.
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®. Finally, assign the original vetrice y; to cluster ;
if and only if row ; of the matrix (¢ was assigned to
cluster ;

Here, we compare the objective function of this final
semidefinite relaxation (5) with that of the original
problem (3). We write the latter as mip JTIX
= min L - xx7- Note that ,,7 is positive semidefinite
and has rank one. A comparision with the relaxed
problem (5) shows that
arbitrary  matrix

x¢T is replaced by an
Xeg‘+(rank one condition is
dropped). Since the primal solution matrix X'es, in

the problem (5), X* can be expressed as °
n T
X'=GCT=QAQT=31"¢ "¢ ®)
1

where Ge p»* with rank (= ,(here, we assume
that the value , is equal to the value p the number
of subgroups). Therefore, the problem (5) with the
property (6) can be derived as follows :

fi

L X" = LGN ={GTLO=331 g Lg ®
= (E:‘ q—(")q (l)) TMZI" q—('r')a (f))
- E”Vm

We assume that the original graph is made up of a
few subgraphs which have infinite distances among
them, then matrix j will be block diagonal matrix
with a few subblock matrices, [ for ;=1 . ‘,,{the
value ,, is the number of subgraphs, here we assume
that the value 4, is equal to the value ,). And its
eigenvalues and eigenvectors are the union of the
eigenvalues and eigenvectors of its blocks. That is,

the term (V104 is can be shown as the second
smallest eigenvector of [, and the ,® is can be
also regarded as the second smallest eigenvalue of
L®, for ;=1 .. . n This approach is reasonable
because the sum of each second minimum values is
also minimum beside the other values’'s sum except
for the first smallest eigenvalues’'s that. Besides the
first contraint in the problem (5) is satisfied when
each column vector of the matrix ¢ is the second
smallest eigenvector of the matrix .

5. Experimental Results

We presented a semidefinite programming algorithm
for the multiple graph cut, which can be implemented
using Matlab. In order to test our algorithm, we
applied it to a few clustering problems. The results
show that our approach is better than the previous
methods, especially a multiple spectral method. We
compare our method to the MNCuf Modified NCud
algorithm described in [2]. Their method is based on
he spectral decomposition of the stochastic matrix p
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Fig. 1. Comparision our method to the other methods.
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