• Title/Summary/Keyword: stochastic optimization algorithm

Search Result 189, Processing Time 0.03 seconds

Real-time implementation of the 2.4kbps EHSX Speech Coder Using a $TMS320C6701^TM$ DSPCore ($TMS320C6701^TM$을 이용한 2.4kbps EHSX 음성 부호화기의 실시간 구현)

  • 양용호;이인성;권오주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.962-970
    • /
    • 2004
  • This paper presents an efficient implementation of the 2.4 kbps EHSX(Enhanced Harmonic Stochastic Excitation) speech coder on a TMS320C6701$^{TM}$ floating-point digital signal processor. The EHSX speech codec is based on a harmonic and CELP(Code Excited Linear Prediction) modeling of the excitation signal respectively according to the frame characteristic such as a voiced speech and an unvoiced speech. In this paper, we represent the optimization methods to reduce the complexity for real-time implementation. The complexity in the filtering of a CELP algorithm that is the main part for the EHSX algorithm complexity can be reduced by converting program using floating-point variable to program using fixed-point variable. We also present the efficient optimization methods including the code allocation considering a DSP architecture and the low complexity algorithm of harmonic/pitch search in encoder part. Finally, we obtained the subjective quality of MOS 3.28 from speech quality test using the PESQ(perceptual evaluation of speech quality), ITU-T Recommendation P.862 and could get a goal of realtime operation of the EHSX codec.c.

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment (노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용)

  • Choi, Seon Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.21-32
    • /
    • 2019
  • Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

A modified Genetic Algorithm using SVM for PID Gain Optimization

  • Cho, Byung-Sun;Han, So-Hee;Son, Sung-Han;Kim, Jin-Su;Park, Kang-Bak;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.686-689
    • /
    • 2004
  • Genetic algorithm is well known for stochastic searching method in imitating natural phenomena. In recent times, studies have been conducted in improving conventional evolutionary computation speed and promoting precision. This paper presents an approach to optimize PID controller gains with the application of modified Genetic Algorithm using Support Vector Machine (SVMGA). That is, we aim to explore optimum parameters of PID controller using SVMGA. Simulation results are given to compare to those of tuning methods, based on Simple Genetic Algorithm and Ziegler-Nicholas tuning method.

  • PDF

A Study on the Improvement of Vehicle Ride Comfort by Genetic Algorithms (유전자 알고리즘을 이용한 차량 승차감 개선에 관한 연구)

  • 백운태;성활경
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.76-85
    • /
    • 1998
  • Recently, Genetic Algorithm(GA) is widely adopted into a search procedure for structural optimization, which is a stochastic direct search strategy that mimics the process of genetic evolution. This methods consist of three genetics operations maned selection, crossover and mutation. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA, being zero-order method, is very simple. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher probability of converge to global optimum compared to traditional techniques which take one-point search method. In this study, a method of finding the optimum values of suspension parameters is proposed by using the GA. And vehicle is modelled as planar vehicle having 5 degree-of-freedom. The generalized coordinates are vertical motion of passenger seat, sprung mass and front and rear unsprung mass and rotate(pitch) motion of sprung mass. For rapid converge and precluding local optimum, share function which distribute chromosomes over design bound is introduced. Elitist survival model, remainder stochastic sampling without replacement method, multi-point crossover method are adopted. In the sight of the improvement of ride comfort, good result can be obtained in 5-D.O.F. vehicle model by using GA.

  • PDF

Crack identification based on Kriging surrogate model

  • Gao, Hai-Yang;Guo, Xing-Lin;Hu, Xiao-Fei
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.25-41
    • /
    • 2012
  • Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a scheme for crack identification based on a Kriging surrogate model is proposed. A modified rectangular grid (MRG) is introduced to move some sample points lying on the boundary into the internal design region, which will provide more useful information for the construction of Kriging model. The initial Kriging model is then constructed by samples of varying crack parameters (locations and sizes) and their corresponding modal frequencies. For identifying crack parameters, a robust stochastic particle swarm optimization (SPSO) algorithm is used to find the global optimal solution beyond the constructed Kriging model. To improve the accuracy of surrogate model, the finite element (FE) analysis soft ANSYS is employed to deal with the re-meshing problem during surrogate model updating. Specially, a simple method for crack number identification is proposed by finding the maximum probability factor. Finally, numerical simulations and experimental research are performed to assess the effectiveness and noise immunity of this proposed scheme.

A Study on Periodic Review Inventory System under Stochastic Budget Constraint (확률적 예산 제약을 고려한 주기적 재고관리 정책에 대한 연구)

  • Lee, Chang-Yong;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.165-171
    • /
    • 2014
  • We develop an optimization algorithm for a periodic review inventory system under a stochastic budget constraint. While most conventional studies on the periodic review inventory system consider a simple budget limit in terms of the inventory investment being less than a fixed budget, this study adopts more realistic assumption in that purchasing costs are paid at the time an order is arrived. Therefore, probability is employed to express the budget constraint. That is, the probability of total inventory investment to be less than budget must be greater than a certain value assuming that purchasing costs are paid at the time an order is arrived. We express the budget constraint in terms of the Lagrange multiplier and suggest a numerical method to obtain optional values of the cycle time and the safety factor to the system. We also perform the sensitivity analysis in order to investigate the dependence of important quantities on the budget constraint. We find that, as the amount of budget increases, the cycle time and the average inventory level increase, whereas the Lagrange multiplier decreases. In addition, as budget increases, the safety factor increases and reaches to a certain level. In particular, we derive the condition for the maximum safety factor.

Performance management of communication networks for computer integrated manufacturing Part ll: Decision making (컴퓨터 통합 샌산을 위한 통신망의 성능관리)

  • Lee, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.138-147
    • /
    • 1994
  • Performance management of computer networks is intended to improve a given network performance in order for more efficient information exchange between subsystems of an integrated large-scale system. Improtance of performance management is growing as many function of the large- scale system depend on the quality of communication services provided by the network. The role of performance management is to manipulate the adjustable protocol parameters on line so that the network can adapt itself to a dynamic environment. This can be divided into two subtasks : performance evaluation to find how changes in protocol parameters affect the network performance and decision making to detemine the magnitude and direction of parameter adjustment. This paper is the second part of the two papers focusing on conceptual design, development, and evaluation of performance management for token bus networks. This paper specifically deals with the task of decision making which utilizes the principles of stochastic optimization and learning automata. The developed algorithm can adjuxt four timer settings of a token bus protocol based on the result of performance evaluation. The overall performance management has been evaluated for its efficacy on a network testbed.

  • PDF

Novel integrative soft computing for daily pan evaporation modeling

  • Zhang, Yu;Liu, LiLi;Zhu, Yongjun;Wang, Peng;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.421-432
    • /
    • 2022
  • Regarding the high significance of correct pan evaporation modeling, this study introduces two novel neuro-metaheuristic approaches to improve the accuracy of prediction for this parameter. Vortex search algorithms (VSA), sunflower optimization (SFO), and stochastic fractal search (SFS) are integrated with a multilayer perceptron neural network to create the VSA-MLPNN, SFO-MLPNN, and SFS-MLPNN hybrids. The climate data of Arcata-Eureka station (operated by the US environmental protection agency) belonging to the years 1986-1989 and the year 1990 are used for training and testing the models, respectively. Trying different configurations revealed that the best performance of the VSA, SFO, and SFS is obtained for the population size of 400, 300, and 100, respectively. The results were compared with a conventionally trained MLPNN to examine the effect of the metaheuristic algorithms. Overall, all four models presented a very reliable simulation. However, the SFS-MLPNN (mean absolute error, MAE = 0.0997 and Pearson correlation coefficient, RP = 0.9957) was the most accurate model, followed by the VSA-MLPNN (MAE = 0.1058 and RP = 0.9945), conventional MLPNN (MAE = 0.1062 and RP = 0.9944), and SFO-MLPNN (MAE = 0.1305 and RP = 0.9914). The findings indicated that employing the VSA and SFS results in improving the accuracy of the neural network in the prediction of pan evaporation. Hence, the suggested models are recommended for future practical applications.

Improving the Performances of the Neural Network for Optimization by Optimal Estimation of Initial States (초기값의 최적 설정에 의한 최적화용 신경회로망의 성능개선)

  • 조동현;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.8
    • /
    • pp.54-63
    • /
    • 1993
  • This paper proposes a method for improving the performances of the neural network for optimization by an optimal estimation of initial states. The optimal initial state that leads to the global minimum is estimated by using the stochastic approximation. And then the update rule of Hopfield model, which is the high speed deterministic algorithm using the steepest descent rule, is applied to speed up the optimization. The proposed method has been applied to the tavelling salesman problems and an optimal task partition problems to evaluate the performances. The simulation results show that the convergence speed of the proposed method is higher than conventinal Hopfield model. Abe's method and Boltzmann machine with random initial neuron output setting, and the convergence rate to the global minimum is guaranteed with probability of 1. The proposed method gives better result as the problem size increases where it is more difficult for the randomized initial setting to give a good convergence.

  • PDF