• Title/Summary/Keyword: stochastic hydrologic time series model

Search Result 13, Processing Time 0.028 seconds

Detecting Nonlinearity of Hydrologic Time Series by BDS Statistic and DVS Algorithm (BDS 통계와 DVS 알고리즘을 이용한 수문시계열의 비선형성 분석)

  • Choi, Kang Soo;Kyoung, Min Soo;Kim, Soo Jun;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.163-171
    • /
    • 2009
  • Classical linear models have been generally used to analyze and forecast hydrologic time series. However, there is growing evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations. Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. In recent, the BDS (Brock-Dechert-Scheinkman) statistic instead of conventional techniques has been used for detecting nonlinearity of time series. The BDS statistic was derived from the statistical properties of the correlation integral which is used to analyze chaotic system and has been effectively used for distinguishing nonlinear structure in dynamic system from random structures. DVS (Deterministic Versus Stochastic) algorithm has been used for detecting chaos and stochastic systems and for forecasting of chaotic system. This study showed the DVS algorithm can be also used for detecting nonlinearity of the time series. In this study, the stochastic and hydrologic time series are analyzed to detect their nonlinearity. The linear and nonlinear stochastic time series generated from ARMA and TAR (Threshold Auto Regressive) models, a daily streamflow at St. Johns river near Cocoa, Florida, USA and Great Salt Lake Volume (GSL) data, Utah, USA are analyzed, daily inflow series of Soyang dam and the results are compared. The results showed the BDS statistic is a powerful tool for distinguishing between linearity and nonlinearity of the time series and DVS plot can be also effectively used for distinguishing the nonlinearity of the time series.

Modeling of Hydrologic Time Series using Stochastic Neural Networks Approach (추계학적 신경망 접근법을 이용한 수문학적 시계열의 모형화)

  • Kim, Seong-Won;Kim, Jeong-Heon;Park, Gi-Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1346-1349
    • /
    • 2010
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Application to Evaluation of Hydrologic Time Series Forecasting for Long-Term Runoff Simulation (장기유출모의를 위한 수문시계열 예측모형의 적용성 평가)

  • Yoon, Sun-Kwon;Ahn, Jae-Hyun;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.809-824
    • /
    • 2009
  • Hydrological system forecasting, which is the short term runoff historical data during the limited period in dam site, is a conditional precedent of hydrological persistence by stochastic analysis. We have forecasted the monthly hydrological system from Andong dam basin data that is the rainfall, evaporation, and runoff, using the seasonal ARIMA (autoregressive integrated moving average) model. Also we have conducted long term runoff simulations through the forecasted results of TANK model and ARIMA+TANK model. The results of analysis have been concurred to the observation data, and it has been considered for application to possibility on the stochastic model for dam inflow forecasting. Thus, the method presented in this study suggests a help to water resource mid- and long-term strategy establishment to application for runoff simulations through the forecasting variables of hydrological time series on the relatively short holding runoff data in an object basins.

A STUDY ON SYNTHETIC GENERATION OF MONTHLY STREAMFLOW BY BIVARIATE ANALYSIS (BIVARIATE ANALYSIS에 의한 월류량에 모의발생에 관한 연구)

  • Seo, Byeong-Ha;Yun, Yong-Nam;Gang, Gwan-Won
    • Water for future
    • /
    • v.12 no.2
    • /
    • pp.63-69
    • /
    • 1979
  • The sequences of monthly streamflows constitute a non-statonary time series. The purely stochastic model has been applied to data generation of non-stationary time series. Tow different mothods--single site and multisite generation--have been used on the hydrologic time series. In this study the synthetic generation method by bivariate analysis, studied by Thomas Fiering, one of multi-site models, has been applied to the historical data on monthly streamflows at two sites in Nakdong River, and also for validity of this model the single site Thomas Fiering model applied. Through statistical analysis it has been shown that the performance of bivariate Thomas Fiering model was better than that of the other. By comparison of mean and standard deviaion between the historical and the generated, and cross correlogram interpretation, it has been known that the model used herein has good performance to simultaneously generate the monthly streamflows at two sites in a river hasin.

  • PDF

Annual Precipitation Reconstruction Based on Tree-ring Data at Seorak (설악산 지역의 Tree-ring 자료를 이용한 연 강수량 재생성)

  • Kwak, Jae Won;Han, Heechan;Lee, Minjung;Kim, Hung Soo;Mun, Jangwon
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • The purpose of this research is reconstruction of annual precipitation based on Tree-ring series at Seorak mountain and examine its effectiveness. To do so we performed nonlinear time series characteristics test of Tree-ring series and reconstructed annual precipitation of Gangneung from 1687 to 1911 using Artificial neural network and Nonlinear autoregressive exogeneous input (NARX) model which reflects stochastic properties. As a result, Tree-ring series at Seorak Mountain shows nonlinear time series property and reconstructed annual precipitation series drawn from NARX is similar in statistical characteristics of observed annual time series.

Reproduction of Long-term Memory in hydroclimatological variables using Deep Learning Model

  • Lee, Taesam;Tran, Trang Thi Kieu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.101-101
    • /
    • 2020
  • Traditional stochastic simulation of hydroclimatological variables often underestimates the variability and correlation structure of larger timescale due to the difficulty in preserving long-term memory. However, the Long Short-Term Memory (LSTM) model illustrates a remarkable long-term memory from the recursive hidden and cell states. The current study, therefore, employed the LSTM model in stochastic generation of hydrologic and climate variables to examine how much the LSTM model can preserve the long-term memory and overcome the drawbacks of conventional time series models such as autoregressive (AR). A trigonometric function and the Rössler system as well as real case studies for hydrological and climatological variables were tested. Results presented that the LSTM model reproduced the variability and correlation structure of the larger timescale as well as the key statistics of the original time domain better than the AR and other traditional models. The hidden and cell states of the LSTM containing the long-memory and oscillation structure following the observations allows better performance compared to the other tested conventional models. This good representation of the long-term variability can be important in water manager since future water resources planning and management is highly related with this long-term variability.

  • PDF

Assessing Sustained Drought Impacts on the Han River Basin Water Supply System Using Stochastic Streamflows (추계학적 모의유량을 이용한 한강수계 용수공급시스템의 장기지속가뭄 영향 평가)

  • Cha, Hyeung-Sun;Lee, Gwang-Man;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.481-493
    • /
    • 2012
  • The Uncertainty of drought events can be regarded as supernatural phenomena so that the uncertainty of water supply system will be also uncontrollable. Decision making for water supply system operation must be dealt with in consideration of hydrologic uncertainty conditions. When ultimate small quantity of precipitation or streamflow lasts, water supply system might be impacted as well as stream pollution, aqua- ecosystem degradation, reservoir dry-up and river aesthetic waste etc. In case of being incapable of supplying water owing to continuation of severe drought, it can make the damage very serious beyond our prediction. This study analyzes comprehensively sustained drought impacts on the Han River Basin Water Supply System. Drought scenarios consisted of several sustained times and return periods for 5 sub-watersheds are generated using a stochastic hydrologic time series model. The developed drought scenarios are applied to assess water supply performance at the Paldang Dam. The results show that multi-year drought events reflecting spatial hydrologic diversity need to be examined in order to recognize variation of the unexpected drought impacts.

Hydrologic Disaggregation Model using Neural Networks Technique (신경망기법을 이용한 수문학적 분해모형)

  • Kim, Sung-Won
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.79-97
    • /
    • 2010
  • The purpose of this research is to apply the neural networks models for the hydrologic disaggregation of the yearly pan evaporation(PE) data in Republic of Korea. The neural networks models consist of multilayer perceptron neural networks model(MLP-NNM) and support vector machine neural networks model(SVM-NNM), respectively. And, for the evaluation of the neural networks models, they are composed of training and test performances, respectively. The three types of data such as the historic, the generated, and the mixed data are used for the training performance. The only historic data, however, is used for the testing performance. The application of MLP-NNM and SVM-NNM for the hydrologic disaggregation of nonlinear time series data is evaluated from results of this research. Four kinds of the statistical index for the evaluation are suggested; CC, RMSE, E, and AARE, respectively. Homogeneity test using ANOVA and Mann-Whitney U test, furthermore, is carried out for the observed and calculated monthly PE data. We can construct the credible monthly PE data from the hydrologic disaggregation of the yearly PE data, and the available data for the evaluation of irrigation and drainage networks system can be suggested.

Synthetic Streamflow Generation Using Autoregressive Modeling in the Upper Nakdong River Basin

  • Rubio, Christabel Jane P.;Oh, Kuk-Ryul;Ryu, Jae-H.;Jeong, Sang-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.81-88
    • /
    • 2010
  • The analysis and synthesis of various types of hydrologic variables such as precipitation, surface runoff, and discharge are usually required in planning and management of water resources. These hydrologic variables are mostly represented using stochastic models. One of which is the autoregressive model, that gives promising results in time series modeling. This study is an application of this model, which aimed to determine the AR model that best represents the historical monthly streamflow of the two gauging stations, namely Andong Dam and Imha Dam, both located in the upper Nakdong River Basin. AR(3) model was found to be the best model for both gauging stations. Parameters of the determined order of AR model ($\phi_1$, $\phi_2$ and $\phi_3$) were also estimated. Using several diagnostic tests, the efficiency of the determined AR(3) model was tested. These tests indicated the accuracy of the determined AR(3) model.

A study on the stochastic generation of annual runoff (연유출량의 추계학적 모의발생에 관한 연구)

  • 이순혁;박명근;맹승진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.31-40
    • /
    • 1995
  • This study was conducted to get best fitting frequency distribution for the annual run- off and to simulate long series of annual flows by single-season first order Markov Model with comparison of statistical parameters which were derived from observed and synthetic flows at four watersheds in Seom Jin and Yeong San river systems. The results summarized through this study are as follows. 1. Hydrologic persistence of observed flows was acknowledged by the correlogram analysis. 2. A normal distribution of the annual runoff for the applied watersheds was confirmed as the best one among others by Kolmogorov-Smirnov test. 3. Statistical parameters were calculated from synthetic flows simulated by normal dis- tribution. In was confirmed that mean and standard deviation of simulated flows are much closer to those of observed data than except coefficient of skewness. 4. Hydrologic persistence between observed flows and synthetic flows simulated was also confirmed by the correlogram analysis. 5. It is to be desired that generation technique of synthetic flow in this study would be compared with other simulation techniques for the objective time series.

  • PDF