• Title/Summary/Keyword: stochastic estimation

Search Result 427, Processing Time 0.03 seconds

Parameter Estimation for an Infinite Dimensional Stochastic Differential Equation

  • Kim, Yoon-Tae
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.161-173
    • /
    • 1996
  • When we deal with a Hilbert space-valued Stochastic Differential Equation (SDE) (or Stochastic Partial Differential Equation (SPDE)), depending on some unknown parameters, the solution usually has a Fourier series expansion. In this situation we consider the maximum likelihood method for the statistical estimation problem and derive the asymptotic properties (consistency and normality) of the Maximum Likelihood Estimator (MLE).

  • PDF

A Suggestion of Fuzzy Estimation Technique for Uncertainty Estimation of Linear Time Invariant System Based on Kalman Filter

  • Kim, Jong Hwa;Ha, Yun Su;Lim, Jae Kwon;Seo, Soo Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.919-926
    • /
    • 2012
  • In order to control a LTI(Linear Time Invariant) system subjected to system noise and measurement noise, first of all, it is necessary to estimate the state of system with reliability. Kalman filtering technique has been widely used to estimate the state of the stochastic LTI system with stationary noise characteristics because of its estimation ability versus algorithm simplicity. However, it often fails to estimate the state of the LTI system of which system parameter uncertainty exists partly and/or input uncertainty exists. In this paper, a new estimation technique based on Kalman filter is suggested for stochastic LTI system under parameter uncertainty and/or input uncertainty. A fuzzy estimation algorithm against uncertainties is introduced so as to compensate the state estimate filtered by Kalman filter. In order to verify the state estimation performance of the suggested technique, several simulations are accomplished.

Receding Horizon FIR Parameter Estimation for Stochastic Systems

  • Lee, Kwan-Ho;Han, Soo-Hee;Lee, Changhun;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.159.1-159
    • /
    • 2001
  • A new time-domain FIR parameter estimation called the receding horizon least square estimation (RHLSE) is suggested for stochastic systems by combining the well known least square estimation with the receding horizon strategy. It can be always obtained without the requirement of any \textit{a priori} information about the horizon initial parameter. A fast algorithm for the suggested estimation is also presented which is remarkable in the view of computational advantage and simple implementation. It is shown that the proposed estimation is robust against temporary modeling uncertainties due to their FIR structure through simulation studies.

  • PDF

Prediction of Ozone Formation Based on Neural Network and Stochastic Method (인공신경망 및 통계적 방법을 이용한 오존 형성의 예측)

  • Oh, Sea Cheon;Yeo, Yeong-Koo
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.119-126
    • /
    • 2001
  • The prediction of ozone formation was studied using the neural network and the stochastic method. Parameter estimation method and artificial neural network(ANN) method were employed in the stochastic scheme. In the parameter estimation method, extended least squares(ELS) method and recursive maximum likelihood(RML) were used to achieve the real time parameter estimation. Autoregressive moving average model with external input(ARMAX) was used as the ozone formation model for the parameter estimation method. ANN with 3 layers was also tested to predict the ozone formation. To demonstrate the performance of the ozone formation prediction schemes used in this work, the prediction results of ozone formation were compared with the real data. From the comparison it was found that the prediction schemes based on the parameter estimation method and ANN method show an acceptable accuracy with limited prediction horizon.

  • PDF

Design of the Well-Conditioned Observer - A Linear Matrix Inequality Approach - (Well-Conditioned 관측기 설계 - A Linear Matrix Inequality Approach -)

  • Jung, Jong-Chul;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2004
  • In this paper, the well-conditioned observer for a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic uncertainties such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic uncertainties such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_{2}$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic uncertainties. In stochastic viewpoints, the estimation variance represents the robustness to the stochastic uncertainties and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

ESTIMATION OF NON-INTEGRAL AND INTEGRAL QUADRATIC FUNCTIONS IN LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS

  • Song, IL Young;Shin, Vladimir;Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.45-60
    • /
    • 2017
  • This paper focuses on estimation of an non-integral quadratic function (NIQF) and integral quadratic function (IQF) of a random signal in dynamic system described by a linear stochastic differential equation. The quadratic form of an unobservable signal indicates useful information of a signal for control. The optimal (in mean square sense) and suboptimal estimates of NIQF and IQF represent a function of the Kalman estimate and its error covariance. The proposed estimation algorithms have a closed-form estimation procedure. The obtained estimates are studied in detail, including derivation of the exact formulas and differential equations for mean square errors. The results we demonstrate on practical example of a power of signal, and comparison analysis between optimal and suboptimal estimators is presented.

Estimation Methods for Population Pharmacokinetic Models using Stochastic Sampling Approach (확률적 표본추출 방법을 이용한 집단 약동학 모형의 추정과 검증에 관한 고찰)

  • Kim, Kwang-Hee;Yoon, Jeong-Hwa;Lee, Eun-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.175-188
    • /
    • 2015
  • This study is about estimation methods for the population pharmacokinetic and pharmacodymic model. This is a nonlinear mixed effect model, and it is difficult to find estimates of parameters because of nonlinearity. In this study, we examined theoretical background of various estimation methods provided by NONMEM, which is the most widely used software in the pharmacometrics area. We focused on estimation methods using a stochastic sampling approach - IMP, IMPMAP, SAEM and BAYES. The SAEM method showed the best performance among methods, and IMPMAP and BAYES methods showed slightly less performance than SAEM. The major obstacle to a stochastic sampling approach is the running time to find solution. We propose new approach to find more precise initial values using an ITS method to shorten the running time.

State estimation of stochastic bilinear system (추계 이선형 시스템의 상태추정)

  • 황춘식
    • 전기의세계
    • /
    • v.30 no.11
    • /
    • pp.728-733
    • /
    • 1981
  • Most of real world systems are highly non-linear. But due to difficulties in analyzing and dealing with it, only the linear system theory is well estabilished. Bilinear system where state and control are linear but not linear jointly is introduced. Here shows that optimal state estimation of stochastic bilinear system requirs infinite dimensional filter, thus onesub-optimal estimator for this system is suggested.

  • PDF

Development of Probability Distribution Estimation Program for Fatigue Crack Growth Lives (피로균열전파수명의 확률분포추정 프로그램 개발)

  • 김선진;안석환;윤성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1058-1064
    • /
    • 2001
  • In this paper, the development of probability distribution estimation program for fatigue crack growth lives was summarize. The probability distribution estimation program of life was developed to increase the reliability of life estimation. In this study, it is considered that the cause of scatter in fatigue crack growth data is due to material inhomogeneity. The material resistance to fatigue crack growth is modelled as a spatial stochastic process, which varies randomly along the crack path. We developed the GUI program to estimate the probability distribution and reliability using the non-Gaussian stochastic process method. This program can be used for the reliability assessment.

  • PDF