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Minimum Distance Estimation for Some Stochastic
Partial Differential Equations

B. L. S. Prakasa Raol

ABSTRACT

Asymptotic properties of minimum distance estimators for the parameter
involved for a class of stochastic partial differential equations are investigated
following the techniques in Kutoyants and Pilibossian (1994).
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1. Introduction

In their recent monograph, Kallianpur and Xiong (1995) discuss the properties
of solutions of stochastic partial differential equations (SPDE’s). They indicate
that SPDE’s are being used for stochastic modelling for instance in the study
of neuronal behaviour in neurophysiology and in building stochastic models of
turbulence. The theory of SPDE’s is investigated in Ito (1984) and more recently
in Rozovskii (1990) and Da Prato and Zabczyk (1992). Huebner et al. (1993)
started the investigation of maximum likelihood estimation of parameters of two
types of SPDE’s and extended their results for a class of parabolic SPDE’s in
Huebner and Rozovskii (1995). Bayes estimation of parameters for such classes
of SPDE are discussed in Prakasa Rao (2000).

One can construct maxiumum likelihood estimators (MLE) in the models for
SPDE discussed in Sections 2 to 4 and it is known that these estimators are
consistent and asymptotically normal and asymptotically efficient as the ampli-
tude of the noise ¢ decreases to zero or the time of observation T increases to
infinity. In spite of having such good properties, the maximum likelihood esti-
mators have some short comings at the same time. Their calculation is often
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cumbersome as the expressions for MLE involve stochastic integrals which need
good approximants for computational purposes. Furthermore MLE are not ro-
bust in the sense that a slight perturbation in the noise component say from a
Wiener process to another Gaussian process with finite variation will change the
properties of the MLE substantially. In order to circumvent these problems, the
minimum distance approach is proposed. Properties of the minimum distance
estimators (MDE) were discussed in Millar (1984) in a general frame work.

Our aim in this paper is to obtain the minimum distance estimators of param-
eters for some class of SPDE’s and investigate the asymptotic properties of such
estimators following the work of Kutoyants and Pilibossian (1994)(¢f. Kutoyants,
1994) for the estimation of a parameter of the Ornstein-Uhlenbeck process.

2. Parabolic Stochastic PDE

Let (Q,F, P) be a probability space and consider a stochastic partial differ-
ential equation (SPDE) of the form

dul(t,z) = A%S(t,z)dt + edW (t,z), 0<t<T, z€G (2.1)

where A% = 0A; + Ay, A1 and Ay being partial differential operators, # € © C R
and W (¢, z) is a cylindrical Brownian motion in L2(G), G being a bounded domain
in R? with the boundary 0G as a C*°-manifold of dimension (d — 1) and locally
G is totally on one side of G. For the definition of cylindrical Brownian motion,
see, Kallianpur and Xiong (1995, p. 93).

The order Ord(A) of a partial differential operator A is defined to be the
order of the highest partial derivative in A. Let mgy and m; be the orders of
the operators Ap and A; respectively. We assume that the operators Ag and A,
commute and m; is even.

Suppose the solution u! (¢, ) of (2.1) has to satisfy the boundary conditions

DYVul(t,2)|ag =0 (2.3)
for all multiindices -y such that |y| = m — 1 where 2m = max(m;, mg). Here
b ledl
DYV f(x) = f(x) (2.4)

oz --- Oz
with |y| =91 + -+ + 74. Suppose that

Axu=~ Y (-1)*D*(a$’ (x)DPu) (2.5)
lad |81<m
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where

o (x) € C®(@). (2.6)

Let
a®f(0,z) = Ga?ﬁ(:ﬂ) + agﬂ (z). (2.7)

Suppose 0y is the true parameter.

We follow the notation introduced in Huebner and Rozovskii (1995). Assume
that the following conditions hold.

(H1) The operators Ag and A; satisfy the condition

/ Ajuvdx = / uAvdz, u,v € CF°(G),1 =0, 1.
G G

(H2) There is a compact neighbourghood © of 6 so that {Ag,0 € O} is a
family of uniformly strongly elliptic operators of order 2m = max(m1, mg).

For s > 0, denote the closure of C§°(G) in the Sobolev space W*2(G) by Wos’z.
The operator A? with boundary conditions defined by (2.3) can be extended to
a closed self-adjoint operator Ly on L2(G) (Shimakura, 1992). In view of the
condition (H2), the operator Ly is lower semibounded, that is there exists a
constant k(f) such that —Lg + k(6)I > 0 and the resolvent (k(6)I — Lg)7! is
compact. Let Ag = (k(6)I — Eg)ﬁ. Let h;(6) be an orthonormal system of eigen
functions of Ag. We assume that

(H3) There exists a complete orthonormal system {h;,7 > 1} independent of
0 such that

Aoh; = /\i(O)hi,e € 0.

The elements of the basis {h;,7 > 1} are also eigen functions for the operator
Ly, that is Loh; = plh; where pf = —X2™(0) + k(0). For s > 0, define H} to be
the set of all u € Ly(G) such that

1/2
[[ulls,o = (Z AZ(0)|(u, hj)Lg(G)|2> < o0.

=1

For s < 0, Hj is defined to be the closure of Ly(G) in the norm ||ul|s ¢ given
above. Then Hj is a Hilbert space with respect to the inner product (.,.)s
associated with the norm |[.{[s,s and the functions A, = A;°(6)h;,7 > 1 form
an orthonormal basis in Hj. Condition (H2) imples that for every s, the spaces
Hj are equivalent for all §. We identify the spaces Hj and the norms ||.|[s ¢ for
different 6 € ©.
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In addition to the conditions (H1)-(H3), we assume that

(H4) up € H™* where a > %. Note that uy € Lo(G).

(H5) The operator A; is uniformly strongly elliptic of even order m; and has
the same system of eigen functions {h;,i > 1} as Ly.

The conditons (H1)-(H5) described above are the same as those in Huebner
and Rozovskii (1995).

Note that up € H™¢. For 6 € O, define

U’gi = (’u,o, h'i-ga)——a- (28)
Then the random field
xQ
ul(t,z) =D ul (t)hip*(z) (2.9)
1=1

is the solution of (2.1) subject to the boundary conditions (2.2) and (2.3) where

uf_(t) is the unique solution of the stochastic differential equation
dul, (t) = plul (t)dt + eA;*(0)dWy(t),0 <t < T, (2.10)
u(0) = uf). (2.11)

Suppose that v; = ugi > 0. For typographical convenience, we write u;(8) for
pé in the following discussion.

Observe that the parameter 8 can be estimated from the equation (2.10). We
now apply the minimum distance approach adapted by Kutoyants and Pilibossian
(1994) to estimate the parameter 6 satisfying the equation (2.10). We define the
minimum Li-norm estimate éiET by the relation

ul (t) — ui(t,0)| dt

1€

T
pi(bier) = arg jnf /0

where u}(t,0) is the solution of the ordinary differential equation

du} (t . .
D) — 0y 6),050,6) = wi.
It is easy to see that
ut(t,0) = v;eti O,
Let

w3 (t,0) — uf (¢, 60)dt.

T
hi(8) = inf /
{6:)12:(8)—12:(60)|>8} Jo

The following theorem is a consequence of Theorem 1 of Kutoyants and Pili-
bossian (1994).
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Theorem 2.1. For any 6 > 0,
Pog(ui(Bier) — pi(60)] > 8) < 2exp { — g2 (60) b3 (9)e 2}

where
g; = exp{—2|p:(60)|T}/(2T)°.

Let ,
Ji(t) = ets(Bo)t / e 005 qW;(s).
0

Note that the process J;(t) is a gaussian process. Define

Ji(t) — utvgeti 0| gg.

T
Y7 = arginf /
v Jo

The following theorem is again a consequence of Theorems 2 and 3 of Kutoy-
ants and Pilibossian (1994).

Theorem 2.2. For any fired T > 0,
(EAi_a)——l(lf'i(éiaT) - Hi(eo)) —p-) Yir as € — 0

when Oy is the true parameter. Furthermore if p;(6p) > 0, then

Yo Tvi/2p:(60) 5 N(0,1) as T — oo.
We now state and prove a lemma.
Lemma 2.1. Suppose that for every T > 0,
Xer EaN Yr as e~ 0

and further suppose that
Yr £> Y as T — oo.

Then

X6T£>Y as € >0 and then T — oc.

Proof. Let F be a closed set and F5 = {z : p(z, F') < §} where p(z, F') denotes
the distance between the point = and the closed set F. Note that Fj decreases to
the set F' as & decreases to zero. Then

P(X.r € F) < P(Yr € F5) + P(|Xer — Yr| > 90). (2.12)
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Hence

limsup P(X.r € F) < P(Yr € Fs) + limsup P(| X, — Y7| > §)

e—0 e—0

= P(Yr € Fy)

since X.r LN Yr as € — 0. Taking limit as T' — oo in the above inequalities, we
get that

limsuplimsup P(X.r € F) < limsup P(Yr € Fy)

T—o00 e—0 T—oo

< P(Y € Fy)

since the set Fy is closed and Yp LY as T = 0o. Let § — 0. Then we have

limsuplimsup P(X.r € F) < P(Y € F)

T—o0 e—0

for every closed set F. Hence, by the standard results from the theory of weak
convergence, it follows that

Xer 5Y as € >0 and then T — oo. (2.13)

a

Applying Lemma 2.1, we get the following result.

Theorem 2.3. Under the probability measure Py, if 1i(6p) > 0, then

(A7) " 0T (s(Bier) — ps(60)) /203 (80) 5 N(0,1) (2.14)
as € = 0 and then T — oo.

In addition to the conditions (H1)-(H5), suppose that

(H6) The functions p;(0) are differentiable with respect to 6 with nonzero
derivatives.

Let p}(#) denote the derivative of the function u;(#) with respect to 8. Ap-
plying the delta method, we obtain the following result.

Theorem 2.4. Under the probability measure Py, if 11i(60) > 0, then

(EA; ) 0T (Bier — 00)v/2:(80) = N (0, [1(60)] %) (2.15)

as € — 0 and then T — .
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In view of Theorem 2.4, the variance of the limiting normal distribution of
estimator ;.7 is proportional to

{2020:(00) X2 (00) 00}

Note that the estimators éieT,i > 1 are independent estimators of the parameter
6, since the processes {W;(t),t > 0},7 > 1 are independent Wiener processes. We
will now construct an optimum estimator out of the estimators éieT,l <i<N
for any N > 1.
Let égT = Zf\ilaiéisqw where o;,1 < 74 < N is a nonrandom sequence of
coefficients to be chosen. Note that
N

95T£> [Zai]% as € > 0 and then T — o0
i=1

by Theorem 2.4 and hence 6.7 is a consistent estimator for 8y as € — 0 and then
T — oo provided 3 | ; = 1. Furthermore

N p—
T (0r - 00) 5 N (0,3 a2 {20706 (00) @)} )
i=1

as € = 0 and then T — oo. This follows again by Theorem 2.4 and the inde-
pendence of the estimators {éieT,l < 1 < N}. We now obtain the optimum
combination of the coefficients {a;,1 < ¢ < N} by minimizing the asymptotic
variance

N
S a2{20715(80) N2 (60) 1 (60)]? |

i=1

subject to the condition Zfil o; = 1. It is easy to see that «; is proportional to
{202113(00) N2 (00) 1 (00)12 }
and the optimal choice of {a;,1 <4 < N} leads to the estimator

o Ty o)X B0l 00 brer
] i1 07 s (B0) A2 (60) 1} (B0)

It is easy to see that

(2.16)

0:r 5 6y as € - 0 and then T — oo,
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N —
(O — 00) 5 N (0.{ 3 2m@) N @) 80) ) )
i=1

as ¢ — 0 and then T — oo again due to the independence of the estimators
éiET, 1 <1 < N. However the random variable 8 cannot be considered as an
estimator of the parameter 8y since it depends on the unknown parameter 6y. In

order to avoid this problem, we consider a modified estimator

bop = SN 02 (Bier) N (Oier ) (1 (BieT))26scr
£ - ~ ~ s «
SN 02 (0ie) N2 (Gier) [l (Bier) 2

which is obtained from 8}, by substituting the estimator éiET for the unknown
parameter 6y in the ¢-th term in the numerator and the denominator in (2.16). In
view of the independence, consistency and asymptotic normality of the estimators
éieT, 1 <1 < N, it follows that the estimator éET is consistent and asymptotically
normal for the parameter §; and we have the following result.

(2.17)

Theorem 2.5. Under the probability measure Py,
95T£>00 as € > 0 and then T — oo

and, if p;(6) >0, 1 < i< N, then

N
1A c -t
1T (er — 00) 5 N (0, { 3 202111(60) 322 (00) [} (00)} )
i=1
ase€ — 0 and then T — oo for any fired N > 1.

3. Stochastic PDE with Linear Drift
(Absolutely Continuous Case)

We now consider an example illustrating the results discussed in Section 2.
Let (2, F, P) be a probability space and consider the process uc(¢,z),0 < z
< 1,0 <t < T governed by the stochastic partial differential equation

duc(t, ) = (Aue(t, z) + Ouc(t, z))dt + edWq (i, z) (3.1)

where A = 8?/9z?. Suppose that ¢ — 0 and # € © = (a,8) C R. Suppose the
initial and the boundary conditions are given by

ue(0,z) = f(x), f € L[0,1]
{ ue(t,0) = ue(t,1) =0,0<t < T (3.2)
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and @ is the nuclear covariance operator for the Wiener process Wo(t, z) taking
values in L7[0,1] so that

Wo(t,z) = QW (¢, z)
and W (t, z) is a cylindrical Brownian motion in L3[0,1]. Then, it is known that
(cf. Rozovskii, 1990)
= 1/2
Wolt,z) = Zqi/ ei(z)W;(t) a.s. (3.3)
1=1

where {W;(t),0< t< T},i > 1 are independent one-dimensional standard Wiener
processes and {e;} is a complete orthonormal system in L3[0, 1] consisting of eigen
vectors of @ and {q;} eigen values of Q.

Let us consider a special covariance operator Q) with ex = sinknz,k > 1 and
M = (wk)?,k > 1. Then {e;} is a complete orthonormal system with eigen values
g = (L4 X;)71,4i > 1 for the operator Q and @ = (I — A)~L. Furthermore

dWg = QY2dw.

We define a solution w.(¢,z) of (3.1) as a formal sum
o0
ue(t, @) = Y uie(t)ei(x) (3.4)
i=1

(¢f- Rozovskii, 1990). It is known that the Fourier coefficient u;.(t) satisfies the
stochastic differential equation

£

with the initial condition
1
wie(0) = v, v; = / f(z)e;(z)dz. (3.6)
0

We assume that v; > 0.

It is known that u.(t,z) as defined above belongs to L([0,T] x €; L2[0, 1])
together with its derivative in ¢. Furthermore u. (¢, z) is the only solution to (3.1)
under the boundary condition (3.2). Let P(,(E) be the measure generated by u,.
when 6 is the true parameter. It can be shown that the family of probability
measures {Fy,0 € O} form an equivalent family. Suppose 6 is the true parame-
ter.
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Observe that the parameter 6 can be estimated from the equation (3.5). We
now apply the minimum distance approach adapted by Kutoyants and Pilibossian
(1994) to estimate the parameter 8 satisfying the equation (3.5). We define the
minimum Li-norm estimate éiET by the relation

wig (t) — ui(t, 0)| dt

T
f;cr = \i + arg inf
1T i g ico /0
where u;(t, 0) is the solution of the ordinary differential equation

du;(t)
dt

= (0 — /\i)ui(t),’ui(o,e) = v;.

It is easy to see that
u;i(t,0) = velfAE,

Let

T
:(6) = inf (t,8) — u;(t, 0)|dt.
00) = ot [, 0) — (e )

The following theorem is a consequence of Theorem 1 of Kutoyants and Pili-
bossian (1994).

Theorem 3.1. For any 6 > 0,
P (Bier = 00] 2 6) < 2exp { = ki(A + 1)g?(8)e 2}
where k; = exp{—2|6y — N\;|T'}/(2T)3.
Let

t
Y;(t) = elfo=)t / e~ 0025 gw,(s).
0

Note that the process Y;(t) is a gaussian process. Define

Yi(t) — utv;el®—2)t| gy,

T
¢ = arginf /
v Jo

The following theorem is again a consequence of Theorems 2 and 3 of Kutoy-
ants and Pilibossian (1994).

Theorem 3.2. For any fizred T > 0,

£ -1 .
(\/)\—-l-].) (gieT _00) £> Gr as € =0
i

where 8y is the true parameter. Furthermore if 6y > \;, then

CrTvi/2(00 — N) 5 N(0,1) as T — .
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Let

e \-1 .
X = (\/—)\—z——+1—) (Bier — O0)Tviv/2(80 — M), (3.7)

Yr = (GrTvin/2(60 — Ni) (3.8)
and Y be a standard normal random variable. Applying Lemma 2.1, we get the

following result.

Theorem 3.3. If 6y > \;, then

( ﬁ__gﬁ)_l(éiET — 00)Tuin/2(0g = 2) 5 N(0,1) (3.9)

as € = 0 and then T — oo.

In view of Theorem 3.3, the variance of the limiting normal distribution of
estimator fc7 is proportional to [2vi2(00 —Xi)(Ai+1)]7L. Note that the estimators
éiET,i > 1 are independent estimators of the parameter 6 since the processes
{W;(t),t > 0},7 > 1 are independent Wiener processes. We will now construct
an optimum estimator out of the estimators éiET, 1<i:< N forany N > 1.

Let 8.7 = ZZNzl o;0;c7 where a;,1 < 1 < N is a nonrandom sequence of
coefficients to be chosen. Note that
N
0.1 N [Zai]eo ase — Qand then T —

1=1

by Theorem 3.3 and hence 0.7 is a consistent estimator for 6y as € — 0 and then
T — oo provided ny__l a; = 1. Furthermore

N
. -1
e T(Br — 60) 5 N (0,3 a?{m,?(eo Wi+ 1} )
i=
as ¢ — 0 and then T — oco. This follows again by Theorem 3.3 and the inde-
pendence of the estimators {6;7,1 < i < N}. We now obtain the optimum
combination of the coefficients {c;,1 < ¢ < N} by minimizing the asymptotic
variance

N -1
Zaf{ZuZ(&o — A (A + 1)}
i=1
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subject to the condition Zfil o; = 1. It is easy to see that «; is proportional

o [v2(8o — A;)(X\; + 1)] and the optimal choice of {ai,1 < i < N} leads to the

“estimator” _
D - L v7 (60 = Xi)(Ni + Dbier

%7 = 3.10
- i= 1 i v2(fp — Ai)(Ni +1) ( )

It is easy to see that

0 5 6y as € - 0 and then T — oo,

eTIT(65r — 6y) —>N( {sz (6o — Ai) (A +1)} 1)

as € = 0 and then T — oo again due to the independence of the estimators
éigT, 1<+ < N. However the random variable 8% cannot be considered as es-
timator of the parameter 6y since it depends on the unknown parameter 6. In
order to avoid this problem, we consider a modified estimator

. N 26 :
05T — i=1Y; ( i€l — A )()‘ + l)ezeT. (311)

SN v2(Bier — ) (N + 1)

which is obtained from 62} by substituting the estimator ;. for the unknown
parameter 6 in the i-th term in the numerator and the denominator in (3.10). In
view of the independence, consistency and asymptotic normality of the estimators
éieT, 1 <7 < N, it follows that the estimator éET is consistent and asymptotically
normal for the parameter 6y and we have the following result.

Theorem 3.4. Under the probability measure Py,,
éET—‘E)HO as € - 0 and then T — oo

and if g > N?7?, then

e (0er — 60) 5 N (0, {sz (0o~ A)( + 1)} )

ase =0 and then T = oc.



Minimum Distance Estimation 225

4. Stochastic PDE with Linear Drift (Singular Case)

Let (2, F, P) be a probability space and consider the process u.(t,z),0 < z
< 1,0 <t < T governed by the stochastic partial differential equation

duc(t, ) = 0 Aug(t,z)dt + (I — A)"V2dW (¢, z) (4.1)
where 6 > 0 satisfying the initial and the boundary conditions

ue(0,z) = f(z), 0 <z <1, f€ Lyf0,1], (4.2)
ue(t,0) = ue(t,1) =0, 0<t < T.

Here I is the identity operator, A = §%/02? as defined in Section 3 and the
process W (t, z) is the cylindrical Brownian motion in Ly[0, 1].
In analogy with (3.5), it can be checked that the Fourier coefficients u;.(t)
satisfy the stochastic differential equations
€

duig(t) = —6/\iuie(t)dt + Ti-_l

with )
udmzwm:Ame@M. (4.4)

We assume that v; > 0.

Let Pée) be the measure generated by u. when 6 is the true parameter. It
can be shown that the family of measures {Pg(s),O € 0} do not form a family
of equivalent probability measures. In fact, Pgs) is singular with respect to Pg,s )
whenever 6 # 6’ in © (cf. Huebner et al., 1993).

Observe that the parameter § can be estimated from the equation (4.3). We
now again apply the minimum distance approach adapted by Kutoyants and
Pilibossian (1994) as before to estimate the parameter 8 satisfying the equation
(4.3). We define the minimum L;-norm estimate éiET by the relation

- T
ficr = —A; " arg inf / uie (t) — ui(t,0)| dt
€0 Jq

where u;(t, ) is the solution of the ordinary differential equation

du;(t
“%_) = —0u;i(t), u:(0,6) = v;.
It is easy to see that

'U,,‘(t, 9) = ‘Uie_a)‘it.
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Let

9:(6) = inf / 'u (t,0) — wilt, 60)|d.
|0—80(>67!

The following theorem is a consequence of Theorem 1 of Kutoyants and Pili-
bossian (1994).

Theorem 4.1.  For any 6 > 0,
P (1fier — 801 > 6371 < 2exp { — ki + 1)g?(8)e 2}
where k; = exp{—2|0o|\:T}/(2T)3.

Let .
Yi(t) :e_o"}‘it/ eoris dwi(s).
0

Note that the process Y;(¢) is a gaussian process. Define

T
T — arg inf/
¥ Jo

The following theorem is again a consequence of Theorem 2 of Kutoyants and
Pilibossian (1994).

Yi(t) — utvie 00Xt} dt.

Theorem 4.2. For any fized T > 0,

-1

6 —~

(ﬁ) (Bier — 00))i B> —mir as € > 0
7

where By is the true parameter.

Note that the estimators 5i5T,i > 1 are independent estimators of the parameter
6 since the processes {W;(t),t > 0},7 > 1 are independent Wiener processes.
Consider a linear estimator constructed out of the estimators éieT, 1<:< N for
any N > 1.

Let égT = Zf\il a;0;eT where ;1 < 7 < N is a nonrandom sequence of
coefficients. Note that

N
éET N (Zai) 6y as e >0
=1

by Theorem 4.2 and hence 6,7 is a consistent estimator for 6y as € — 0 provided

N -1 = 1. However no optimality properties of this estimator for suitable
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choice of the weights «a;’s could be established.

Remark. The interesting difference in parameter estimation for SPDE as com-
pared to SDE is that one can consider an additional parameter for asymptotics.
In the case of SPDE, the dimension of finite dimensional projection N can be
considered as the parameter for asymptotics in addition to the time of observa-
tion T and the amplitude of noise ¢ as used in the case of SDE. Here we have
discussed asymptotic properties of estimators as the amplitude of noise € — 0 and
then time of observation T — oo based on the finite N-dimensional projection
of the observation. It would be interesting to study the asymptotic properties of
the estimators as N — oo for fixed € and T as was done by Huebner et al. (1993)
in the case of maximum likelihood estimators. Another problem of interest is to
obtain a lower minimax bound on the risk over all estimators for fixed N and
compare it with the limiting variance of égT.
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