• Title/Summary/Keyword: stochastic conditions

Search Result 293, Processing Time 0.023 seconds

MEAN SQUARE EXPONENTIAL DISSIPATIVITY OF SINGULARLY PERTURBED STOCHASTIC DELAY DIFFERENTIAL EQUATIONS

  • Xu, Liguang;Ma, Zhixia;Hu, Hongxiao
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.205-212
    • /
    • 2014
  • This paper investigates mean square exponential dissipativity of singularly perturbed stochastic delay differential equations. The L-operator delay differential inequality and stochastic analysis technique are used to establish sufficient conditions ensuring the mean square exponential dissipativity of singularly perturbed stochastic delay differential equations for sufficiently small ${\varepsilon}$ > 0. An example is presented to illustrate the efficiency of the obtained results.

Stochastic convexity in markov additive processes (마코프 누적 프로세스에서의 확률적 콘벡스성)

  • 윤복식
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.147-159
    • /
    • 1991
  • Stochastic convexity(concvity) of a stochastic process is a very useful concept for various stochastic optimization problems. In this study we first establish stochastic convexity of a certain class of Markov additive processes through the probabilistic construction based on the sample path approach. A Markov additive process is obtained by integrating a functional of the underlying Markov process with respect to time, and its stochastic convexity can be utilized to provide efficient methods for optimal design or for optimal operation schedule of a wide range of stochastic systems. We also clarify the conditions for stochatic monotonicity of the Markov process, which is required for stochatic convexity of the Markov additive process. This result shows that stochastic convexity can be used for the analysis of probabilistic models based on birth and death processes, which have very wide application area. Finally we demonstrate the validity and usefulness of the theoretical results by developing efficient methods for the optimal replacement scheduling based on the stochastic convexity property.

  • PDF

Stochastic convexity in Markov additive processes and its applications (마코프 누적 프로세스에서의 확률적 콘벡스성과 그 응용)

  • 윤복식
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.1
    • /
    • pp.76-88
    • /
    • 1991
  • Stochastic convexity (concavity) of a stochastic process is a very useful concept for various stochastic optimization problems. In this study we first establish stochastic convexity of a certain class of Markov additive processes through probabilistic construction based on the sample path approach. A Markov additive process is abtained by integrating a functional of the underlying Markov process with respect to time, and its stochastic convexity can be utilized to provide efficient methods for optimal design or optimal operation schedule wide range of stochastic systems. We also clarify the conditions for stochastic monotonicity of the Markov process. From the result it is shown that stachstic convexity can be used for the analysis of probabilitic models based on birth and death processes, which have very wide applications area. Finally we demonstrate the validity and usefulness of the theoretical results by developing efficient methods for the optimal replacement scheduling based on the stochastic convexity property.

  • PDF

CONTROLLABILITY OF STOCHASTIC VOLTERRA INTEGRODIFFERENTIAL SYSTEMS

  • Subramaniam, R.;Balachandran, K.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.753-759
    • /
    • 2002
  • In this paper, sufficient conditions for the controllability of stochastic integrodifferential systems in Banach spaces are established. The results are obtained by using a fixed point theorem. An example is provided to illustrate the theory.

CONTROLLABILITY OF STOCHASTIC FUNCTIONAL INTEGRODIFFERENTIAL EVOLUTION SYSTEMS

  • Kokila, J.;Balachandran, K.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.587-601
    • /
    • 2011
  • In this paper, we prove the existence and uniqueness of mild solution for stochastic functional integrodifferential evolution equations and derive sufficient conditions for the controllability results. As an illustration we consider the controllability for a system governed by a random motion of a string.

General Properties of Quantization Systems with a Stochastic Reference (Stochastic reference를 가진 량자화 시스템의 일반적인 성질)

  • 한선신
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.2
    • /
    • pp.44-53
    • /
    • 1981
  • This paper deals with two quantization systems with a stochastic refernce and gives the unified statical properties of the two systems. The conditions are derived for the invariance of the output quantized signal with respect to the imput signal for the two systems and it is shown that they are same. The correlation function by a polarity method using stochastic reference signals is show to be a special case of the general properties derived here. We have also shown that the classical stochastic computing is derived from the general properties of the first system and that L.G. roberts has used a special characteristic of the general properties of the second system in his image processing.

  • PDF

FURTHER EVALUATION OF A STOCHASTIC MODEL APPLIED TO MONOENERGETIC SPACE-TIME NUCLEAR REACTOR KINETICS

  • Ha, Pham Nhu Viet;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.523-530
    • /
    • 2011
  • In a previous study, the stochastic space-dependent kinetics model (SSKM) based on the forward stochastic model in stochastic kinetics theory and the Ito stochastic differential equations was proposed for treating monoenergetic space-time nuclear reactor kinetics in one dimension. The SSKM was tested against analog Monte Carlo calculations, however, for exemplary cases of homogeneous slab reactors with only one delayed-neutron precursor group. In this paper, the SSKM is improved and evaluated with more realistic and complicated cases regarding several delayed-neutron precursor groups and heterogeneous slab reactors in which the extraneous source or reactivity can be introduced locally. Furthermore, the source level and the initial conditions will also be adjusted to investigate the trends in the variances of the neutron population and fission product levels across the reactor. The results indicate that the improved SSKM is in good agreement with the Monte Carlo method and show how the variances in population dynamics can be controlled.

ON STOCHASTIC EVOLUTION EQUATIONS WITH STATE-DEPENDENT DIFFUSION TERMS

  • Kim, Jai-Heui;Song, Jung-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1019-1028
    • /
    • 1997
  • The integral solution for a deterministic evolution equation was introduced by Benilan. Similarly, in this paper, we define the integral solution for a stochastic evolution equation with a state-dependent diffusion term and prove that there exists a unique integral solution of the stochastic evolution euation under some conditions for the coefficients. Moreover we prove that this solution is a unique strong solution.

  • PDF