• Title/Summary/Keyword: stochastic conditions

Search Result 294, Processing Time 0.029 seconds

Differential Geometric Conditions for the state Observation using a Recurrent Neural Network in a Stochastic Nonlinear System

  • Seok, Jin-Wuk;Mah, Pyeong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.592-597
    • /
    • 2003
  • In this paper, some differential geometric conditions for the observer using a recurrent neural network are provided in terms of a stochastic nonlinear system control. In the stochastic nonlinear system, it is necessary to make an additional condition for observation of stochastic nonlinear system, called perfect filtering condition. In addition, we provide a observer using a recurrent neural network for the observation of a stochastic nonlinear system with the proposed observation conditions. Computer simulation shows that the control performance of the stochastic nonlinear system with a observer using a recurrent neural network satisfying the proposed conditions is more efficient than the conventional observer as Kalman filter

  • PDF

MINIMAL AND MAXIMAL BOUNDED SOLUTIONS FOR QUADRATIC BSDES WITH STOCHASTIC CONDITIONS

  • Fan, Shengjun;Luo, Huanhuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2065-2079
    • /
    • 2017
  • This paper is devoted to the minimal and maximal bounded solutions for general time interval quadratic backward stochastic differential equations with stochastic conditions. A general existence result is established by the method of convolution, the exponential transform, Girsanov's transform and a priori estimates, where the terminal time is allowed to be finite or infinite, and the generator g is allowed to have a stochastic semi-linear growth and a general growth in y, and a quadratic growth in z. This improves some existing results at some extent. Some new ideas and techniques are also applied to prove it.

STOCHASTIC CALCULUS FOR BANACH SPACE VALUED REGULAR STOCHASTIC PROCESSES

  • Choi, Byoung Jin;Choi, Jin Pil;Ji, Un Cig
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.45-57
    • /
    • 2011
  • We study the stochastic integral of an operator valued process against with a Banach space valued regular process. We establish the existence and uniqueness of solution of the stochastic differential equation for a Banach space valued regular process under the certain conditions. As an application of it, we study a noncommutative stochastic differential equation.

INDEFINITE STOCHASTIC OPTIMAL LQR CONTROL WITH CROSS TERM UNDER IQ CONSTRAINTS

  • Luo, Cheng-Xin;Feng, En-Min
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.185-200
    • /
    • 2004
  • A stochastic optimal LQR control problem under some integral quadratic (IQ) constraints is studied, with cross terms in both the cost and the constraint functionals, allowing all the control weighting matrices being indefinite. Sufficient conditions for the well-posedness of this problem are given. When these conditions are satisfied, the optimal control is explicitly derived via dual theory.

SOLVABILITY OF GENERAL BACKWARD STOCHASTIC VOLTERRA INTEGRAL EQUATIONS

  • Shi, Yufeng;Wang, Tianxiao
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1301-1321
    • /
    • 2012
  • In this paper we study the unique solvability of backward stochastic Volterra integral equations (BSVIEs in short), in terms of both the adapted M-solutions introduced in [19] and the adapted solutions via a new method. A general existence and uniqueness of adapted M-solutions is proved under non-Lipschitz conditions by virtue of a briefer argument than the ones in [13] and [19], which modifies and extends the results in [13] and [19] respectively. For the adapted solutions, the unique solvability of BSVIEs under more general stochastic non-Lipschitz conditions is shown, which improves and generalizes the results in [7], [14] and [15].

Exponential stability of stochastic static neutral neural networks with varying delays

  • Sun, Xiaoqi
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.237-242
    • /
    • 2022
  • This paper is concerned with exponential stability in mean square for stochastic static neutral neural networks with varying delays. By using Lyapunov functional method and with the help of stochastic analysis technique, the sufficient conditions to guarantee the exponential stability in mean square for the neural networks are obtained and some results of related literature are extended.

HOMOGENEOUS CONDITIONS FOR STOCHASTIC TENSORS

  • Im, Bokhee;Smith, Jonathan D.H.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.371-384
    • /
    • 2022
  • Fix an integer n ≥ 1. Then the simplex Πn, Birkhoff polytope Ωn, and Latin square polytope Λn each yield projective geometries obtained by identifying antipodal points on a sphere bounding a ball centered at the barycenter of the polytope. We investigate conditions for homogeneous coordinates of points in the projective geometries to locate exact vertices of the respective polytopes, namely crisp distributions, permutation matrices, and quasigroups or Latin squares respectively. In the latter case, the homogeneous conditions form a crucial part of a recent projective-geometrical approach to the study of orthogonality of Latin squares. Coordinates based on the barycenter of Ωn are also suited to the analysis of generalized doubly stochastic matrices, observing that orthogonal matrices of this type form a subgroup of the orthogonal group.

Stochastic Delay at Linked Signals (연동신호제어계에서의 교통류의 지연 -Random 지연을 중심으로-)

  • 이광훈
    • Journal of Korean Society of Transportation
    • /
    • v.9 no.1
    • /
    • pp.47-56
    • /
    • 1991
  • With respect to stochastic delays at linked signals the solid quantitative information has not been available as yet. On the basis of field data the values of "I" (variance-mean ration of flow) were related with the rate of flow. The stochastic delays with specific "I" values were obtained from the distribution of overflow queue, which were calculated by the use of Markov chains. This examination of the results led to the derivation of a simple method for calculating stochastic dclays through the introduction of "I" into Miller's model. The good agreement was shown between the model and the field. The relationships between the cycle lengths and delays were examinated in a large number of conditions with regard to degree of saturation. signal split and link length. Within the practical range of cycle length uniform delays were dominant and no critical point was found in terms of minimum, delay. In highly saturated conditions however the weight of stochastic delay is noticeable.

  • PDF

EXISTENCE AND CONTROLLABILITY RESULTS FOR NONDENSELY DEFINED STOCHASTIC EVOLUTION DIFFERENTIAL INCLUSIONS WITH NONLOCAL CONDITIONS

  • Ni, Jinbo;Xu, Feng;Gao, Juan
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.41-59
    • /
    • 2013
  • In this paper, we investigate the existence and controllability results for a class of abstract stochastic evolution differential inclusions with nonlocal conditions where the linear part is nondensely defined and satisfies the Hille-Yosida condition. The results are obtained by using integrated semigroup theory and a fixed point theorem for condensing map due to Martelli.

INVERSE PROBLEM FOR STOCHASTIC DIFFERENTIAL EQUATIONS ON HILBERT SPACES DRIVEN BY LEVY PROCESSES

  • N. U., Ahmed
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.813-837
    • /
    • 2022
  • In this paper we consider inverse problem for a general class of nonlinear stochastic differential equations on Hilbert spaces whose generating operators (drift, diffusion and jump kernels) are unknown. We introduce a class of function spaces and put a suitable topology on such spaces and prove existence of optimal generating operators from these spaces. We present also necessary conditions of optimality including an algorithm and its convergence whereby one can construct the optimal generators (drift, diffusion and jump kernel).