• Title/Summary/Keyword: still-motion

Search Result 369, Processing Time 0.026 seconds

Kinematical Analysis of Handball Step Shoot according to Attack Position (공격위치에 따른 핸드볼 스텝슛의 운동학적 분석)

  • Kang, Sang-Hack
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.55-66
    • /
    • 2005
  • The present study used a video analysis system to quantify the kinematical data of step shoot motion by male university handball players. From the results of analyzing dynamic variables of step shoot motion according to shooting direction were drawn conclusions as follows. 1. The height of release was proportional to the height of players, and the height of release appeared low in left-side attacks. This is probably because the left-right-throwing angle is larger in left-side attacks than that in center attacks and right-side attacks and, as a result, the throwing arm is lowered down in throwing. 2. The leftward inclination angle of the body was larger in order of right-side attacks > center attacks > left side attacks. 3. Players' throwing form was close to three quarter style in left-side attacks. In center and right-side attacks, the arm was somewhat more upright but still it was more three quarter style than overhand style. 4. The front-rear throwing angle at the moment of release was much higher in right-side attacks than in left-side ones. This is probably because the point of time for releasing the ball is usually late in right-side attacks and, as a result, the front-rear throwing angle becomes quite large. 5. The contribution of body parts on the ball speed was higher in order of the forearm > upper arm, hand > shoulder joint. 6. In players whose distance between the two legs at the moment of release, their body usually did not incline to the side much. Thus it is considered necessary to correct the right leg in their shooting motion. 7. According to the result of analyzing throwing form, the speed of the ball at the moment of leaving the hand was faster in right-side attacks than in left-side and center attacks.

Comparison of Video Laryngoscope and Direct Laryngoscope on Rapidity and Accuracy in Tracheal Intubation by Paramedic (1급 응급구조사의 비디오후두경 기관삽관과 직접후두경 기관삽관의 신속성 및 정확도 비교)

  • Sim, Gyu-Sik
    • The Korean Journal of Emergency Medical Services
    • /
    • v.14 no.1
    • /
    • pp.5-18
    • /
    • 2010
  • Objective : This study compares Video laryngoscope and Direct laryngoscope in tracheal Intubation on rapidity and accuracy by paramedic and aims to improve efficiency of airway management and survival rate in pre-hospital treatment for the patients with severe trauma, cardiac arrest or dyspnea caused by acute diseases. Methods : 60 paramedics were recruited from 13 fire stations located in C province. With the consent of the paramedics, likelihood ratio test was carried out and they were divided into two different groups; DL group (30) and GVL group (30). Regarding intubation conditions, difficult airway grade I, grade II and grade III as well as sniffing position and neutral position were examined. This study also compared between ambulance in motion and in stand still. Frequency, average and standard deviation were analyzed with statistics program, SPSS WIN 17.0 and repeated measure design was introduced to examine inter-relations between position, grade and groups. Results : Intubation was performed more rapidly in neutral position and GVL than in sniffing position and DL(F = 15.260, p = .000). Rapidity value was better with grade I and grade II than grade III and better with GVL than DL(F = 32.629, p = .000). Accuracy value was higher with neutral position and GVL than sniffing position and DL(F = 5.008, p = .011). grade III was less accurate than grade I, grade II and GVL was more accurate than DL(F = 10.966, p = .000). Ambulance motion status did not show any statistically significant differences in accuracy and rapidity. Conclusion : Given this study results, neutral position is better for the patient with severe trauma. For a better survival, GVL intubation can be considered since GVL can enhance accuracy as well as rapidity regarding difficult airway. Since there is no significant differences in ambulance motion factors, intubation can be recommended even in moving ambulance for shortening traveling time to a hospital.

  • PDF

Effects of whole body movements in using virtual reality headsets on visually induced motion sickness (전신 움직임을 요구하는 컨트롤러가 가상현실 디바이스에서 시지각과 가상현실 멀미에 끼치는 영향)

  • Kim, Sung-ho;Shin, Dong-Hee
    • Journal of Digital Contents Society
    • /
    • v.18 no.2
    • /
    • pp.283-291
    • /
    • 2017
  • Though new body movement based input system immerged in Virtual Reality (VR), VR still has a visually induced motion sickness (VIMS) problem to be accepted for users. VIMS are caused by changes in visually perceived movement that discord with vestibular system's sense of movement. Not only Head-body movements, but also hand gestures to make commands and torso movement can affect visual movement perception by enhancing immersion and its psychological product; presence. The question arises does whole body movement and hand gesture to make commands are more dominant to arousal, presence, and VIMS? To address this question, we conducted "2 (IV1; head-body movements only vs. whole body movements) * 1" between subject design experiment. The results showed that significant effect on whole body movements and arousal, marginally significant effect on presence. Eyewear usage was a moderator between hand gesture and presence relationship.

A study on performance evaluation of DVCs with different coding method and feasibility of spatial scalable DVC (분산 동영상 코딩의 코딩 방식에 따른 성능 평가와 공간 계층화 코더로서의 가능성에 대한 연구)

  • Kim, Dae-Yeon;Park, Gwang-Hoon;Kim, Kyu-Heon;Suh, Doug-Young
    • Journal of Broadcast Engineering
    • /
    • v.12 no.6
    • /
    • pp.585-595
    • /
    • 2007
  • Distributed video coding is a new video coding paradigm based on Slepian-Wolf and Wyner-Ziv's information theory Distributed video coding whose decoder exploits side information transfers its computational burden from encoder to decoder, so that encoding with light computational power can be realized. RD performance is superior than that of standard video coding without motion compensation process but still has a gap with that of coding with motion compensation process. This parer introduces basic theory of distributed video coding and its structure and then shows RD performances of DVCs whose coding style is different from each other and of a DVC as a spatial scalable video coder.

Impact and Shock Attenuation of the Runners with and without Low Back Pain (요통 유무에 따른 달리기 시 충격과 충격 흡수율)

  • Lee, Young-Seong;Ryu, Sihyun;Gil, Ho Jong;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2021
  • Objective: The purpose of the study was to compare the acceleration and shock attenuation (SA) of the runners with/without low back pain (LBG vs. NLBG) while running at 2.5 m/s, 3.0 m/s, 3.5 m/s and 4.0 m/s. Method: 15 adults without low back pain (age: 23.13±3.46 years, body weight: 70.13±8.94 kg, height: 176.79±3.68 cm, NLBG) and 7 adults with low back pain (age: 27.14±5.81 years, body weight: 73.10±10.74 kg, height: 176.41±3.13 cm, LBG) participated in this study. LBG was recruited through the VAS pain rating scale. All participants ran on an instrumented treadmill (Bertec, USA). Results: The LBG shows statistically greater vertical acceleration at the distal tibia during running at 3.5 m/s and 4.0 m/s and greater shock attenuation from the distal tibia to the head during running at 3.5 m/s compared with the NLBG during running (p<.05). As the speed increased, there was a statistically significant increase in vertical/resultant acceleration and shock attenuation for both groups. Conclusion: The findings indicated that the runners with low back pain (LBG) experience greater impact and shock attenuation compared with non-low back pain group (NLBG) during fast running. However, it is still inconclusive whether high impact on the lower extremity during running is the main cause of low back pain in the population. Thus, it is suggested that the study on low back pain should observe the characteristics of impact during running with individuals' low back pain experience and clinical symptoms.

Hybrid Real-time Monitoring System Using2D Vision and 3D Action Recognition (2D 비전과 3D 동작인식을 결합한 하이브리드 실시간 모니터링 시스템)

  • Lim, Jong Heon;Sung, Man Kyu;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.583-598
    • /
    • 2015
  • We need many assembly lines to produce industrial product such as automobiles that require a lot of composited parts. Big portion of such assembly line are still operated by manual works of human. Such manual works sometimes cause critical error that may produce artifacts. Also, once the assembly is completed, it is really hard to verify whether of not the product has some error. In this paper, for monitoring behaviors of manual human work in an assembly line automatically, we proposes a realtime hybrid monitoring system that combines 2D vision sensor tracking technique with 3D motion recognition sensors.

Design of maneuvering target tracking system using neural network as an input estimator (입력 추정기로서의 신경회로망을 이용한 기동 표적 추적 시스템 설계)

  • 김행구;진승희;박진배;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.524-527
    • /
    • 1997
  • Conventional target tracking algorithms based on the linear estimation techniques perform quite efficiently when the target motion does not involve maneuvers. Target maneuvers involving short term accelerations, however, cause a bias in the measurement sequence. Accurate compensation for the bias requires processing more samples of which adds to the computational complexity. The primary motivation for employing a neural network for this task comes from the efficiency with which more features can be as inputs for bias compensation. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates and hence can take the burden off the primary Kalman filter which still provides the target position and velocity estimates.

  • PDF

Design of Disturbance Observer Considering Robustness and Control Performance (2) : It's Application for Optical Disc Drive Servo System (강인성과 제어 성능을 고려한 외란 관측기의 설계 (2) : 광 디스크 드라이브 서보 시스템에의 적용 실험)

  • 김홍록;최영진;서일홍;정완균;박명관;이경호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.270-276
    • /
    • 2003
  • The disturbance observer (DOB) has been widely utilized fer high precision and high speed motion control application. However, it still lacks the analysis for the robustness brought by using DOB. This paper summarizes six guidelines for the design of DOB taking into account the robustness and control performance in case of the second order system. For effectiveness of the proposed guideline, the actual implementation and experimental results of the DOB is compared in the Optical Disk Drive(ODD) servo system. In the DVD player and DVD-ROM drive, the guidelines of DOB are useful, and the disturbance rejection performance is improved under the DOB system.

Intelligent Switching Control of the Pneumatic Artificial Muscle Manipulators

  • Ahn, Kyoung-Kwan;Thanh, TU Diep Cong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.76-81
    • /
    • 2004
  • Problems with the control, oscillatory motion and compliance of pneumatic systems have prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, ease of maintenance and inherent safety are factors that could be potentially exploited in sophisticated dexterous manipulator designs. These advantages have led to the development of novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle Manipulators. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external inertia load in the pneumatic artificial muscle manipulator. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is newly proposed. This estimates the external inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external inertia loads.

  • PDF

HSFE Network and Fusion Model based Dynamic Hand Gesture Recognition

  • Tai, Do Nhu;Na, In Seop;Kim, Soo Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3924-3940
    • /
    • 2020
  • Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.