• Title/Summary/Keyword: stiffness reinforcement

Search Result 574, Processing Time 0.029 seconds

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

An Experimental Study of Flexural Strengthening Method of Reinforced Concrete Beams with Near Surface Mounted CFRP Strips (탄소섬유판 (CFRP) 표면매립 (NSM) 공법을 이용한 콘크리트 구조물 휨 보강에 관한 실험 연구)

  • Lim, Dong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.131-136
    • /
    • 2013
  • The purpose of this study is to establish the flexural strengthening method of the concrete members. To accomplish this objective, a total of seven concrete beams were tested. From this study, it is found that the initial flexural stiffness and strength of the beams reinforced with NSM CFRP strips were significantly improved compared to the beam without CFRP strip. Failure of the beam reinforced with NSM strips is initiated by failure of NSM strips, eventually sudden explosive compressive failure in the loaded region. This strengthening method combined with NSM CFRP strips and high performance mortar for concrete cover recovery is evaluated by a good strengthening method for the strength, durability and good appearance of concrete structures.

Analytical Simulation of Shake-Table Responses of a 1:5 Scale 10-story Wall-type RC Residential Building Model (1:5 축소 10층 벽식 RC 공동주택 모델의 진동대실험 응답에 대한 해석적 모사)

  • Lee, Han-Seon;Jeong, Da-Hun;Hwang, Kyung-Ran
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.617-627
    • /
    • 2011
  • This paper presents the results of analytical simulation of shake-table responses of a 1:5 scale 10-story reinforcement concrete(RC) residential building model by using the PERFORM-3D program. The following conclusion are drawn based on the observation of correlation between experiment and analysis; (1) The analytical model simulated fairly well the global elastic behavior under the excitations representative of the earthquake with the return period of 50 years. Under the design earthquake(DE) and maximum considered earthquake(MCE), this model shows the nonlinear behavior, but does not properly simulate the maximum responses, and stiffness and strength degradation in experiment. The main reason is considered to be the assumption of elastic slab. (2) Although the analytical model in the elastic behavior closely simulated the global behavior, there were considerable differences in the distribution of resistance from the wall portions. (3) Under the MCE, the shear deformation of wall was relatively well simulated with the flexural deformation being overestimated by 10 times that of experiment. This overestimation is presumed to be partially due to the neglection of coupling beams in modeling.

Seismic Performance Assessment of RC Pier Walls under Cyclic Out-of-plane Loading (면외방향으로 반복하중을 받는 철근콘크리트 벽식 교각의 내진성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.73-83
    • /
    • 2006
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete pier walls under cyclic out-of-plane loading and to develop improved seismic design criteria. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A 4-node flat shell element with drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize the behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The method is verified a useful tool to assess the seismic performance of reinforced concrete pier walls subjected to cyclic out-of-plane load through comparing with reliable experimental results.

Influence of electro-magneto-thermal environment on the wave propagation analysis of sandwich nano-beam based on nonlocal strain gradient theory and shear deformation theories

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.329-342
    • /
    • 2017
  • In this paper, the dispersion characteristics of elastic waves propagation in sandwich nano-beams with functionally graded (FG) face-sheets reinforced with carbon nanotubes (CNTs) is investigated based on various high order shear deformation beam theories (HOSDBTs) as well as nonlocal strain gradient theory (NSGT). In order to align CNTs as symmetric and asymmetric in top and bottom face-sheets with respect to neutral geometric axis of the sandwich nano-beam, various patterns are employed in this analysis. The sandwich nano-beam resting on Pasternak foundation is subjected to thermal, magnetic and electrical fields. In order to involve small scale parameter in governing equations, the NSGT is employed for this analysis. The governing equations of motion are derived using Hamilton's principle based on various HSDBTs. Then the governing equations are solved using analytical method. A detailed parametric study is conducted to study the effects of length scale parameter, different HSDBTs, the nonlocal parameter, various aligning of CNTs in thickness direction of face-sheets, different volume fraction of CNTs, foundation stiffness, applied voltage, magnetic intensity field and temperature change on the wave propagation characteristics of sandwich nano-beam. Also cut-off frequency and phase velocity are investigated in detail. According to results obtained, UU and VA patterns have the same cut-off frequency value but AV pattern has the lower value with respect to them.

Flexural Performance and Cracking Resistance of Continuous Composite Slab using Micro Steel Fibers (마이크로 강섬유 콘크리트를 적용한 연속 합성슬래브의 휨 및 균열 저항성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Kim, Gap-Deug;Choi, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.387-397
    • /
    • 2015
  • In the present study, to enhance the constructability, a composite slab system using deck plate and micro steel fiber concrete was studied. In the proposed slab system, on-situ re-bar placement is not required. Steel fibers replace the temperature reinforcement. The present study focused on the crack control at the slab top in the continuous composite slab without spliced bars. Eight continuous slabs with various parameters were tested under vertical loading. The test parameters were the amount and types of micro steel fibers, types of deck plate, and the use of top bars in the continuous slab. To evaluate the crack resistance of the slabs, crack widths were measured in the continuous slabs. The test results showed that although the top spliced bars were not used, cracking were restrained by large flexural stiffness of the composite sections.

Geometry Effect of Multi-Walled Carbon Nanotube on Elastic Modulus of Polymer Composites (다중벽 탄소나노튜브의 형상인자에 따른 고분자 복합재료의 탄성계수에 관한 연구)

  • Suhr, Jonghwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.89-94
    • /
    • 2014
  • The high Young's modulus and tensile strength of carbon nanotubes has attracted great attention from the research community given the potential for developing super-strong, super-stiff composites with carbon nanotube reinforcements. Over the decades, the strength and stiffness of carbon nanotube-reinforced polymer nanocomposites have been researched extensively. However, unfortunately, such strong composite materials have not been developed yet. It has been reported that the efficiency of load transfer in such systems is critically dependent on the quality of adhesion between the nanotubes and the polymer chains. In addition, the waviness and orientation of the nanotubes embedded in a matrix reduce the reinforcement effectiveness. In this study, we carried out performed micromechanics-based numerical modeling and analysis by varying the geometry of carbon nanotubes including their aspect ratio, orientation, and waviness. The results of this analysis allow for a better understanding of the load transfer capabilities of carbon nanotube-reinforced polymer composites.

Applicability of Cu-Al-Mn shape memory alloy bars to retrofitting of historical masonry constructions

  • Shrestha, Kshitij C.;Araki, Yoshikazu;Nagae, Takuya;Omori, Toshihiro;Sutou, Yuji;Kainuma, Ryosuke;Ishida, Kiyohito
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.233-256
    • /
    • 2011
  • This paper investigates the applicability of newly developed Cu-Al-Mn shape memory alloy (SMA) bars to retrofitting of historical masonry constructions by performing quasi-static tests of half-scale brick walls subjected to cyclic out-of-plane flexure. Problems associated with conventional steel reinforcing bars lie in pinching, or degradation of stiffness and strength under cyclic loading, and in their inability to restrain residual deformations in structures during and after intense earthquakes. This paper attempts to resolve the problems by applying newly developed Cu-Al-Mn SMA bars, characterized by large recovery strain, low material cost, and high machinability, as partial replacements for steel bars. Three types of brick wall specimens, unreinforced, steel reinforced, and SMA reinforced specimens are prepared. The specimens are subjected to quasi-static cyclic loading up to rotation angle enough to cause yielding of reinforcing bars. Corresponding nonlinear finite element models are developed to simulate the experimental observations. It was found from the experimental and numerical results that both the steel reinforced and SMA reinforced specimens showed substantial increment in strength and ductility as compared to the unreinforced specimen. The steel reinforced specimen showed pinching and significant residual elongation in reinforcing bars while the SMA reinforced specimen did not. Both the experimental and numerical observations demonstrate the superiority of Cu-Al-Mn SMA bars to conventional steel reinforcing bars in retrofitting historical masonry constructions.

Evaluation of Behaviors in Abutment Transition Zone Depending on Constrution Orders and Number of Piles (뒤채움 시공순서 및 말뚝 수에 따른 교대 접속부 거동평가)

  • Kim, Ung-Jin;Jeong, Rag-Gyo;Kim, Dae-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The RAR (Reinforced Abutment for Railways) is an economical abutment to reduce the settlement of a transitional zone and horizontal displacement of an abutment by constructing backfill before the abutment. In this paper, the performance of the RAR depending on the pile installation was evaluated using 2D (Dimensional) finite element analysis and compared with the existing abutment (with 5 rows pile). Numerical analysis showed that increasing pile installation is more effective in reducing horizontal displacement and earth pressure than settlement of the transitional zone. The horizontal displacement and earth pressure of the RAR was approximately 26~37% and 59~83% compared to the existing abutment by changing the pile installation. More pile installation led to a greater reduction of the horizontal displacement and earth pressure of the RAR. In addition, the horizontal earth pressure of RAR is influenced considerably by the reinforcement, pile, foundation, and stiffness of the ground.

Damages of minarets during Erciş and Edremit Earthquakes, 2011 in Turkey

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Muvafik, Murat
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.479-499
    • /
    • 2014
  • This paper illustrates the damages of reinforced concrete and masonry minarets during October 23 (Erciş) and November 9 (Edremit), 2011 Van earthquakes in Turkey. Erciş and Edremit are townships located 90km and 18km from Van city center in Turkey, respectively. Ground accelerations and response spectrums for these earthquakes are given in this paper. A total of 63 reinforced concrete and masonry minarets are heavily damaged or collapsed in the city center and villages nearby after both earthquakes. Because of the fact that there is no Turkish standard and specification directly related to design of minarets, nearly all of the constructions are carried out by workers using only their own technical knowledge. So, all of the non-engineering reinforced concrete and masonry minarets completely collapsed or damaged heavily. From the study, it is seen that the damages are due to several reasons such as site effect, location, and length of the fault, reduction in cross section and formation of the discontinuity, use of plain reinforcement steel, use of concrete with insufficient strength, existence of short lap splices and incorrect end hook angle, larger mass and stiffness concentrations on some region, longitudinal reinforcements discontinuity, cracks at the cylindrical body, and damage of spire and end ornament. In addition to these reasons, the two earthquakes hit the minarets within seventeen days, causing progressive damage. So, the existing design and construction practices should be improved to provide sufficient earthquake performance. Also, it is recommended that there should be a safe distance between the minaret and surrounding structures to reduce the loose of life after earthquake.