• Title/Summary/Keyword: stiffness reinforcement

Search Result 574, Processing Time 0.025 seconds

Characteristics of Flexuarl-Shear Behavior of Beam Using Demonstrated CFRP Rod (국내 시범 생산 CFRP rod를 적용한 보 부재의 휨-전단 특성)

  • Choi, So-Yoeng;Kim, Il-Sun;Choi, Myoung-Sung;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.86-94
    • /
    • 2022
  • Replacement of FRP rod as steel reinforcement has been attracted significantly to prevent the degradation of the concrete structure due to corrosion. So, the technology development to extend the structure's service life by improving FRP properties has been proceeded worldwide. Accordingly, it is necessary to develop Korea's CFRP rod and CFRP grid, including the manufacturing techniques to improve the properties of high-strength and high-stiffness. Moreover, the research should be conducted to evaluate the structural behavior of the beams using the CFRP rod or grid. This study investigates the flexural and shear behavior of reinforced concrete beam using demonstrated CFRP rod as reinforcement according to the reinforcement ratio and shear span to depth ratio. From the results, when the reinforcement ratio is out of a specific range, it is seemed that the effect on performance improvement of the beam using CFRP rod is cancelled or not significant. Meanwhile, when the CFRP rod was used as reinforcement, the possibility of shear failure occurred, even steel stirrups were installed in the beam with CFRP rod as tensile reinforcement according to the Korean Design Standard. Therefore, when the CFRP rod is used as tensile reinforcement in a beam, it should be prepared that a specific limitation of reinforcement ratio and an investigation against shear failure. Also, the ductility of the beam using the CFRP rod is determined by the deformation energy evaluation method. So, the ductility should be investigated by applying the deformation energy evaluation method that reflects the structural behavior of the beam.

A Experimental Study on Fatigue Behavior of SFRC Beams (강섬유철근콘크리트보의 피로거동에 대한 실험적 연구)

  • 강보순
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.443-452
    • /
    • 2001
  • Fatigue behavior of reinforced concrete(RC) and steel fiber reinforced concrete(SFRC) beams has been experimentally investigated. Fatigue behavior influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and load ratio $P_{u}/P_{o}$. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack widths and increases stiffness, and thus enhances the behavior in serviceability limit states also for high cyclic fatigue loading.

  • PDF

Joint Shear Failure of Reinforced Concrete Interior Beam-Column Joint (내부 보-기둥 접합부의 전단파괴)

  • 이민섭;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.303-308
    • /
    • 2000
  • The design of column joint is an important part of earthquake resistant design of reinforced concrete moment resisting frames. Beam column joints must provide sufficient stiffness and strength to resist and sustain the loads induced by adjacent beams and columns. This paper investigates the difference of the current design codes which provide a different approach for the design of beam column joint in seismic zone. The model provided by Hitoshi Shiohara(1998) is reviewed in this paper, which provides a good relationship between moment and shear action of interior beam column joint and a role shear reinforcement according to their position.

  • PDF

Fatigue Behavior of SFRC Elements under High Cyclic Loading (사용반복하중에 대한 강섬유철근콘크리트 부재의 피로거동)

  • 강보순;황성춘;오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.431-438
    • /
    • 2001
  • Fatigue behavior of reinforced concrete(RC) and steel fiber reinforced concrete(SFRC) elements has been experimentally investigated. Fatigue behavior influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and load ratio $P_{u}$ $P_{o}$. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack widths and increases stiffness, and thus enhances the behavior in serviceability limit states also for high cyclic fatigue loadingngng

  • PDF

Crack Behavior of Steel Fiber Reinforced Concrete (강섬유 철근콘크리트의 균열특성)

  • 강보순;황성춘;심형섭
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.336-343
    • /
    • 2000
  • Crack behavior of steel fiber concrete(SFC) and reinforced steel fiber concrete(RSFC) specimens has been experimentally and analytical investigated. Clack behavior of RSFC beams influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strenth of concrete. It can be observed from experimental result that addition of steel fiber to concrete specimen reduce crack width and increases stiffness, and thus enhances the behavior in serviceability limit states also high cyclic loading

  • PDF

Investigation of Bending Stiffness of Porous Shell Structures Fabricated by 3D Printing (3차원 프린팅으로 제작된 다공성 박판 구조물의 굽힘강성 고찰)

  • Lim, Yeong-Eun;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.491-497
    • /
    • 2017
  • In recent years, 3D printing has received increasing attention due to its potential for direct fabrication beyond the traditional rapid prototyping. 3D printing has the advantage of being able to manufacture complicated shapes that were thought impossible to produce by traditional manufacturing processes. This advantage has driven applications of 3D printing to direct manufacturing of functional parts, such as lightweight structures and component integration. In this study, a porous shell structure is designed for the purpose of weight reduction and ventilation. Finite element (FE) analyses are performed to compare the effective stiffness of the porous structure with the conventional solid structure. Structural reinforcements are also considered in order to make up the stiffness reduction due to the porosity, and the relevant FE analyses are performed to investigate the effect of the reinforcement design on the bending stiffness. The optimized reinforced structure is then proposed through response surface analysis.

Optimization of Reinforcement of Thin-Walled Structures for a Natural Frequency (고유진동수를 고려한 박판 구조물의 보강재 최적설계)

  • Lim O-Kaung;Jeong Seung-Hwan;Choi Eun-Ho;Kim Dae-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.195-202
    • /
    • 2006
  • Thin-walled structures are efficiently utilized an automobiles, aircraft, satellite and ship as well as needed light weight simultaneously. This paper presents new shape of automobile hood reinforcement that rotating parts as engine, transmission are protected by thin-walled structures. The automobile hood is concerned about the resonance occurs due to the frequency of the rotating parts. The hood must be designed by supporting the stiffness of design loads and considering the natural frequencies. Hence, it is sustained the stiffness and considered the vibration by resonance. It is deep related to ride. Therefore, the topology, shape and size optimization methods are used to design the automobile hood. Topology technique is applied to determine the layout of a structural component optimum size with maximized natural frequency by volume reduction. In this research, The optimal structure layout of an inner reinforcement of an automobile hood for the natural frequency of a designated mode is obtained by using topology optimization method. The optimum size and the optimum shape are determined by PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm.

Evaluation of Design Characteristics in the Reinforced Railroad Subgrade Through the Sensitivity Analysis (민감도 분석을 통한 철도보강노반 설계 특성 평가)

  • Kim, Dae-Sang;Hwang, Sung-Ho;Kim, Ung-Jin;Park, Young-Kon;Park, Seong-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.15-22
    • /
    • 2013
  • By changing from ballasted track to concrete slab track, new type railroad subgrade is strongly required to satisfy strict regulations for displacement limitations of concrete slab track. In this study, sensitivity analysis was performed to assess the design characteristics of new type reinforced railroad subgrade, which could minimize residual settlement after track construction and maintain its function as a permanent railway roadbed under large cyclic load. With developed design program, the safety analysis (circular slip failure, overturning, and sliding) and the evaluation of internal forces developed in structural members (wall and reinforcement) were performed according to vertical installation spacing and stiffness of short and long geotextile reinforcement. Based on this study, we could evaluate the applicabilities of 0.4 H short geogrid length with 0.4 m vertical installation spacing of geotextile as reinforcement and what the ground conditions are for the reinforced railroad subgrade. And also, we could grasp design characteristics of the reinforced railroad subgrade, such as the importance of connecting structure between wall and reinforcement, boundary conditions allowing displacement at wall ends to minimize maximum bending moment of wall.