• Title/Summary/Keyword: stiffness reinforcement

Search Result 574, Processing Time 0.03 seconds

High performance fibre reinforced cement concrete slender structural walls

  • Ganesan, N.;Indira, P.V.;Seena., P.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.309-324
    • /
    • 2014
  • In the design of reinforced concrete structural walls, in order to ensure adequate inelastic displacement behaviour and to sustain deformation demands imposed by strong ground motions, special reinforcement is considered while designing. However, these would lead to severe reinforcement congestion and difficulties during construction. Addition of randomly distributed discrete fibres in concrete improves the flexural behaviour of structural elements because of its enhanced tensile properties and this leads to reduction in congestion. This paper deals with effect of addition of steel fibres on the behavior of high performance fibre reinforced cement concrete (HPFRCC) slender structural walls with the different volume fractions of steel fibres. The specimens were subjected to quasi static lateral reverse cyclic loading until failure. The high performance concrete (HPC) used was obtained based on the guidelines given in ACI 211.1 which was further modified by prof.Aitcin (1998). The volume fraction of the fibres used in this study varied from 0 to 1% with an increment of 0.5%. The results were analysed critically and appraised. The study indicates that the addition of steel fibres in the HPC structural walls enhances the first crack load, strength, initial stiffness and energy dissipation capacity.

Seismic behaviour of concrete columns with high-strength stirrups

  • Wang, Peng;Shi, Qingxuan;Wang, Feng;Wang, Qiuwei
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • The seismic behaviour of reinforced concrete (RC) columns made from high-strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength stirrups (HSSs) and three with normal-strength stirrups (NSSs), were tested under a combination of high axial and reversed cyclic loads. The effects of stirrup strength and the ratio of transverse reinforcement on the cracking patterns, hysteretic response, strength, stiffness, ductility, energy dissipation and strain of transverse reinforcement were studied. The results indicate that good seismic behaviour of an RC column subjected to high axial compression can be obtained by using a well-shaped stirrup. Stirrup strength had little effect on the lateral bearing capacity. However, the ductility was significantly modified by improving the stirrup strength. When loaded with a large lateral displacement, the strength reduction of NSS specimens was more severe than that of those with HSSs, and increasing the stirrup strength had little effect on the stiffness reduction. The ductility and energy dissipation of specimens with HSSs were superior to those with NSSs. When the ultimate displacement was reached, the core concrete could be effectively restrained by HSSs.

Evaluation of Flexural Performance of Reinforced Concrete Shear Walls According to Flexural Retrofit by Wall End Excavating (단부 파쇄형 휨 보강에 따른 철근콘크리트 전단벽 휨 성능 평가)

  • Cho, Ui-Jin;Kim, Su-Yong;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.123-133
    • /
    • 2020
  • The purpose of this study is to analyze the method of retrofitting flexural strength and the flexural performance of retrofitted shear walls. There are various ways to reinforce the flexural strength of reinforced concrete shear wall structural systems that have already been built, in the case of that, the external force is increased, and the internal force is insufficient. However, there are various problems, such as excessive flexural stiffness after reinforcement and increasing the thickness and length of the wall. We have developed a retrofit method to solve these problems. The wall end is excavated to place the required vertical rebars, and concrete is poured after placing rebars. This is the same concept as creating wall end boundary elements later on. We also studied the anchorage method of reinforcement and the interaction method between the retrofitting end and the existing wall. The flexural test results for the reinforced concrete shear wall using the studied retrofit method can be predicted according to the sectional analysis and FEM analysis, and there are differences in the plastic hinge length, crack propagation, stiffness degradation and energy dissipation due to the bending depending on the vertical rebar ratio of wall end.

A Validation Study on the Reinforcement Effect of Reservoir Grouting by Surface Wave Survey (표면파탐사를 이용한 저수지 제체 그라우팅 보강효과 검증 연구)

  • Bae, Hyungseop;Lee, Yeong-Dong;Won, Kyoung-Sik
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.297-312
    • /
    • 2018
  • In order to assess the safety diagnosis and grouting reinforcement effect of old reservoir facility, local governments and public offices mainly use electrical resistivity survey. However, electrical resistivity survey is a qualitative evaluation that varies the resistivity value by various exploration conditions. It is also difficult to grasp the stiffness change directly related to the stability of reservoir, thus an electrical resistivity survey is not applicable to continuous stability monitoring after grouting. The purpose of this study is to investigate and validate the quantitative evaluation of reinforcement effect of reservoir with cement grouting through shear velocity (Vs), which is closely related to the stiffness (${\mu}$) of the ground. This study was carried out on two reservoir facilities. The reinforcement effect was evaluated by comparing the permeability test, standard penetration test, down-hole test and MASW(Multi-channel Analysis of Surface wave) survey before and after cement grouting. Shear wave velocity changes before and after grouting were analyzed by phase velocity difference and inversion analysis, respectively, and the reliability of the analytical results was evaluated by comparing with field test results. Shear wave velocity increases to 5~10% in case of the D levee, and 10~20% in the levee of H reservoir. These results are showed similar pattern to the field test results.

A Parametric Study on Seismic Performance of Internally Confined Hollow RC Columns (내부 구속 중공 RC 기둥의 내진성능에 관한 매개 변수 연구)

  • Won, Deok-Hee;Han, Taek-Hee;Kim, Jung-Hun;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.28-35
    • /
    • 2012
  • Recently, there is to increase interest in seismic performance of piers. Hollow section is applied to increasing the seismic performance of piers. However, hollow RC pier becomes the biaixial confining state because hollow part is not confined. The pier is developed brittle failure from inner face in hollow part. A tube is inserted in hollow part to become the weakness. This is ICH RC(Internally Confined Hollow RC) pier. This pier is enhanced stiffness, strength, and ductility by core concrete has triaxial confining stress. In this paper is researched about parameters effect the seismic performance. Parameters are hollow ratio, transverse reinforcement, longitudinal reinforcement, and concrete strength.

FE modeling of inelastic behavior of reinforced high-strength concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.373-393
    • /
    • 2014
  • A finite element model for predicting the entire nonlinear behavior of reinforced high-strength concrete continuous beams is described. The model is based on the moment-curvature relations pre-generated through section analysis, and is formulated utilizing the Timoshenko beam theory. The validity of the model is verified with experimental results of a series of continuous high-strength concrete beam specimens. Some important aspects of behavior of the beams having different tensile reinforcement ratios are evaluated. In addition, a parametric study is carried out on continuous high-strength concrete beams with practical dimensions to examine the effect of tensile reinforcement on the degree of moment redistribution. The analysis shows that the tensile reinforcement in continuous high-strength concrete beams affects significantly the member behavior, namely, the flexural cracking stiffness, flexural ductility, neutral axis depth and redistribution of moments. It is also found that the relation between the tensile reinforcement ratios at critical negative and positive moment regions has great influence on the moment redistribution, while the importance of this factor is neglected in various codes.

Compression of hollow-circular fiber-reinforced rubber bearings

  • Pinarbasi, Seval;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.361-384
    • /
    • 2011
  • Earlier studies on hollow-circular rubber bearings, all of which are conducted for steel-reinforced bearings, indicate that the hole presence not only decreases the compression modulus of the bearing but also increases the maximum shear strain developing in the bearing due to compression, both of which are basic design parameters also for fiber-reinforced rubber bearings. This paper presents analytical solutions to the compression problem of hollow-circular fiber-reinforced rubber bearings. The problem is handled using the most-recent formulation of the "pressure method". The analytical solutions are, then, used to investigate the effects of reinforcement flexibility and hole presence on bearing's compression modulus and maximum shear strain in the bearing in view of four key parameters: (i) reinforcement extensibility, (ii) hole size, (iii) bearing's shape factor and (iv) rubber compressibility. It is shown that the compression stiffness of a hollow-circular fiber-reinforced bearing may decrease considerably as reinforcement flexibility and/or hole size increases particularly if the shape factor of the bearing is high and rubber compressibility is not negligible. Numerical studies also show that the existence of even a very small hole can increase the maximum shear strain in the bearing significantly, which has to be considered in the design of such annular bearings.

A Structural Analysis of Tsunami-proof Damper in Nuclear Power Plant (원자력 발전소에서 쓰나미 방지용 댐퍼에 대한 구조해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.603-609
    • /
    • 2020
  • The purpose of this study is to research dampers, which are applied mainly to buildings adjacent to the coast, such as nuclear facilities, and used for ventilation and can safely protect lives and equipment in emergency situations. Comparing the equivalent stress for three models with hinge reinforcement and support reinforcement based on the early design model for Damper, in the Base model, the highest stress occurred in the part of hinge, especially in the centrally mounted hinge, and after reinforced the hinge, it was occurred in the rear support. For models reinforced hinges and supports, it is considered that reinforcement for stiffness will be required in the future as it entered within the range of allowable stress. For the safety factor distribution, the minimum safety ratio was sufficiently secured at least 1 and was high at the edge of the Damper frame and the Blade. As the hinge was reinforced, the safety factor distribution of Blade was increased, and it was verified that the safety factor was secured through the support reinforcement.

Effective stiffness in regular R/C frames subjected to seismic loads

  • Micelli, Francesco;Candido, Leandro;Leone, Marianovella;Aiello, Maria Antonietta
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.481-501
    • /
    • 2015
  • Current design codes and technical recommendations often provide rough indications on how to assess effective stiffness of Reinforced Concrete (R/C) frames subjected to seismic loads, which is a key factor when a linear analysis is performed. The Italian design code (NTC-2008), Eurocode 8 and ACI 318 do not take into account all the structural parameters affecting the effective stiffness and this may not be on the safe side when second-order $P-{\Delta}$ effects may occur. This paper presents a study on the factors influencing the effective stiffness of R/C beams, columns and walls under seismic forces. Five different approaches are adopted and analyzed in order to evaluate the effective stiffness of R/C members, in accordance with the scientific literature and the international design codes. Furthermore, the paper discusses the outcomes of a parametric analysis performed on an actual R/C building and analyses the main variables, namely reinforcement ratio, axial load ratio, concrete compressive strength, and type of shallow beams. The second-order effects are investigated and the resulting displacements related to the Damage Limit State (DLS) under seismic loads are discussed. Although the effective stiffness increases with steel ratio, the analytical results show that the limit of 50% of the initial stiffness turns out to be the upper bound for small values of axial-load ratio, rather than a lower bound as indicated by both Italian NTC-2008 and EC8. As a result, in some cases the current Italian and European provisions tend to underestimate second-order $P-{\Delta}$ effects, when the DLS is investigated under seismic loading.

Tenon Reinforcement Technique on Tradition Wooden Structures Using Spiral Hardware (나선형 철물을 사용한 전통 목구조의 장부 보강기법)

  • Yu, Hye Ran;Kwon, Ki Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • The failure of tenon in a traditional wood-framed structure may collapse of the entire structure. This study evaluates the strength and stiffness of tenon joints between the beams and pillars through experimental study and suggests reinforcing method of the tenon joint without dismantling the main structures. The main experimental parameters are the number, distance, shape, and inserting depth of spiral-shaped reinforcing steels. As the thickness of the tenon in beams increases, the strength and the initial shear stiffness of the joint increases and, however, the tenons in pillar becomes weaker, resulting in the safety problem of the structure. It is recommended that three spiral-shaped reinforcing steels be placed in the central parts of the tenon to effectively improve the strength and the shear stiffness of the joint.