• Title/Summary/Keyword: stiffness problem

Search Result 666, Processing Time 0.024 seconds

Pounding Characteristics of a Bridge Superstructure on Rubber Bearings (교량 상부구조물의 탄성받침 설치에 따른 충돌특성 분석)

  • Choi, Hyoung-Suk;Kim, Jung-Woo;Gong, Yeong-I;Cheung, Jin-Hwan;Kim, In-Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • Seismic structure pounding between adjacent superstructures may induce the destruction of pier and bridge superstructures and cause local damage that leads to the collapse of the whole bridge system. The pounding problem is related to the expansion of joints, gap distance and seismic response of the abutments. In this research, methods of the contact element approach, the linear spring model, the Kelvin-Voigt model and the Hertz model were studied to analyse the pounding characteristics. The shaking table test for a model specimen such as a bridge superstructure with elastomeric bearings was performed to evaluate the contact element approach methods. Relationships between the time history response from the numerical analysis results and the measured response from the shaking table test are compared. The experimental results were not well matched with the numerical analysis results using the existing pounding stiffness models. Therefore, in this study, coefficients are proposed to calculate the appropriate pounding stiffness ratio.

Global Sensitivity Analysis of Joints for Plug-in Digital Framework (플러그인 디지털 프레임웍을 위한 연결부 전역민감도 해석)

  • Lee, Dooho;Won, Young-Woo;Kwon, Jong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.483-488
    • /
    • 2016
  • Plug-In Digital Framework is a system response analysis tool that is employed when system components are composed of black-box modules. Generally, the dynamic characteristics of joints between the system components significantly affect system responses, and they lead to displacement- and frequency-dependent stiffness and loss factor. Thus, the sensitivity of each joint parameters should be estimated from a global perspective. In this study, we introduce a global sensitivity analysis procedure under the Plug-In Digital Framework. To efficiently calculate the system responses, we introduce the frequency response function (FRF)-based substructuring method. Using the random balance designs (RBD), we generate the system responses and estimate the global first-order sensitivities for each joint stiffness. We apply the proposed global sensitivity analysis method to an interior noise problem of a passenger car, and we evaluate the efficiency of the global sensitivity analysis method.

A Lubrication Design Optimization of Mechanical Face Seal (미케니컬 페이스 실의 유활 최적설계)

  • Choe, Byeong-Ryeol;Lee, An-Seong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2989-2994
    • /
    • 2000
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface of a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance between mating seal faces gets smaller. But the very small clearance may result in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, ant it present a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby is optimization is one of the main design consideration. in this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries, to give lubrication performances, such as opening force, restoring moment, leakage, and axial and angular stiffness coefficients. Then, to improve the seal performance an optimization is performed, considering various design variables simultaneously. For the tested case the optimization ha successfully resulted in the optimal design values of outer and inner seal radii, coning, seal clearance, and balance radius while satisfying all the operation subjected constraints and design variable side-constraints, and improvements of axial and angular stiffness coefficients by 16.8% and 2.4% respectively and reduction of leakage by 38.4% have been achieved.

A Study on Effect of Various Cooling Methods in Motion of High-Precision Ball Screw (고속 고정밀 볼 스크류 구동에 따른 강제 냉각방식의 효과에 관한 연구)

  • Kim, Su-Sang;Xu, Zhe-Zhu;Kim, Hyun-Koo;Lyu, Sung-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.254-259
    • /
    • 2013
  • Ball screw system is widely used as a precision mechanical linear actuator that translates rotational motion to linear motion for its high efficiency, great stiffness and long life. Recently, according to the requirements of high accuracy and stiffness, the pre-load on the ball screw which means of remove the backlash in the ball screw is usually used. Because of the preload which means the frictional resistance between the screw and nut, becomes a dominating heat source and it generates thermal deformation of ball screw which is the reason for low accuracy of the positioning decision. There are several methods to solve the problem that includes temperature control, thermal stable design and error compensation. In the past years, researchers focused on the error compensation technique for its ability to correct ball screw error effectively rather than the capabilities of careful machine design and manufacturing. Significant amounts of researches have been done to real-time error compensation. But in this paper, we developed a series of cooling methods to get thermal equilibrium in the ball screw system. So we find the optimum cooling type for improving positioning error which caused by thermal deformation in the ball screw system.

A Study on the Standardized Finite Element Models for Carbody Structures of Railway Vehicle Made of Sandwich Composites (샌드위치 복합재 적용 철도차량 차체 구조물의 표준유한요소모델 제시 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Ko, Hee-Young;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.382-388
    • /
    • 2010
  • This paper describes the standardized finite element model for carbody structures of railway vehicle made of sandwich composites. Recently, sandwich composites were widely used to railway vehicle due to the improvement of energy efficiency, high specific stiffness and strength, weight reduction and space saving in korea. Therefore, structural integrity should be verified using finite element analysis prior to the manufacture of composite railway vehicle. The standardized finite element model for composite carbody structures was introduced through comparing the results of real structural test under vertical, compressive, twisting load and natural frequency test of various railway vehicles in this study. The results show that the quadratic shell element is suitable to model the reinforced metal frame used to improve the flexural stiffness of sandwich panel compared to beam element, and layered shell and solid element are recommended to model the skin and honeycomb core of sandwich panel compared to sandwich shell element. Also, the proposed standard finite element model has the merit of being applied to crashworthiness problem without modifications of finite element model.

Experimental study on hysteretic behavior of steel moment frame equipped with elliptical brace

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.891-907
    • /
    • 2020
  • Many studies reveal that during destructive earthquakes, most of the structures enter the inelastic phase. The amount of hysteretic energy in a structure is considered as an important criterion in structure design and an important indicator for the degree of its damage or vulnerability. The hysteretic energy value wasted after the structure yields is the most important component of the energy equation that affects the structures system damage thereof. Controlling this value of energy leads to controlling the structure behavior. Here, for the first time, the hysteretic behavior and energy dissipation capacity are assessed at presence of elliptical braced resisting frames (ELBRFs), through an experimental study and numerical analysis of FEM. The ELBRFs are of lateral load systems, when located in the middle bay of the frame and connected properly to the beams and columns, in addition to improving the structural behavior, do not have the problem of architectural space in the bracing systems. The energy dissipation capacity is assessed in four frames of small single-story single-bay ELBRFs at ½ scale with different accessories, and compared with SMRF and X-bracing systems. The frames are analyzed through a nonlinear FEM and a quasi-static cyclic loading. The performance features here consist of hysteresis behavior, plasticity factor, energy dissipation, resistance and stiffness variation, shear strength and Von-Mises stress distribution. The test results indicate that the good behavior of the elliptical bracing resisting frame improves strength, stiffness, ductility and dissipated energy capacity in a significant manner.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.

Size Optimization of a Rod Using Frequency Response Functions of Substructures (부분 구조의 주파수 응답 함수를 이용한 봉의 치수 최적화)

  • Yoon, Hong Geun;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.905-913
    • /
    • 2017
  • In this work, a method of size optimization is proposed to maximize the natural frequency of a rod that consists of a hidden shape in one part and an exposed shape in the other. The frequency response function of a rod composed of two parts is predicted by using the frequency response functions of each of the parts instead of the shapes of the parts. The mass and stiffness matrices of the rod are obtained by using the mass and stiffness matrices of the equivalent vibration systems, which are obtained by applying the experimental modal analysis method to the frequency response functions of the parts. Through several numerical examples, the frequency response function obtained by using the proposed method is compared with that of a rod to validate the prediction method based on equivalent vibration systems. A size optimization problem is formulated for maximizing the first natural frequency of a combined rod, which is replaced with an equivalent vibration system, and a rod structure is optimized by using an optimization algorithm.

The dynamic stiffness of resilient materials for floor impact sound according to temperature change (온도변화에 따른 바닥충격음 완충재의 동탄성계수 변화)

  • Yeon, Junoh;Goo, Heemo;Lee, Sungchan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.338-342
    • /
    • 2018
  • In order to solve the floor impact sound problem in the upper and lower floors, the Ministry of Land, Transport and Maritime Affairs also notifies the physical properties of the resilient material affecting the floor impact sound level. The dynamic modulus of elasticity and the loss factor before and after heating are most related to the floor impact noise, especially for the cushioning material. Therefore, in this study, the rate of change with respect to the dynamic modulus and loss factor with temperature change was examined by increasing $10^{\circ}C$ by $10^{\circ}C$ from the temperature condition of $70^{\circ}C$ specified in the standard. The dynamic modulus of elasticity and the loss modulus were measured by using the pulse excitation method for eight kinds of samples. The calculation method was calculated by the time series analysis method using the damped vibration waveform.

Numerical Evaluation of Fundamental Finite Element Models in Bar and Beam Structures (Bar와 Beam 구조물의 기본적인 유한요소 모델의 수치해석)

  • Ryu, Yong-Hee;Ju, Bu-Seog;Jung, Woo-Young;Limkatanyu, Suchart
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The finite element analysis (FEA) is a numerical technique to find solutions of field problems. A field problem is approximated by differential equations or integral expressions. In a finite element, the field quantity is allowed to have a simple spatial variation in terms of linear or polynomial functions. This paper represents a review and an accuracy-study of the finite element method comparing the FEA results with the exact solution. The exact solutions were calculated by solid mechanics and FEA using matrix stiffness method. For this study, simple bar and cantilever models were considered to evaluate four types of basic elements - constant strain triangle (CST), linear strain triangle (LST), bi-linear-rectangle(Q4),and quadratic-rectangle(Q8). The bar model was subjected to uniaxial loading whereas in case of the cantilever model moment loading was used. In the uniaxial loading case, all basic element results of the displacement and stress in x-direction agreed well with the exact solutions. In the moment loading case, the displacement in y-direction using LST and Q8 elements were acceptable compared to the exact solution, but CST and Q4 elements had to be improved by the mesh refinement.