• Title/Summary/Keyword: stiffness problem

Search Result 666, Processing Time 0.024 seconds

Reinforcement Learning-based Search Trajectory Generation and Stiffness Tuning for Connector Assembly (커넥터 조립을 위한 강화학습 기반의 탐색 궤적 생성 및 로봇의 임피던스 강성 조절 방법)

  • Kim, Yong-Geon;Na, Minwoo;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.455-462
    • /
    • 2022
  • Since electric connectors such as power connectors have a small assembly tolerance and have a complex shape, the assembly process is performed manually by workers. Especially, it is difficult to overcome the assembly error, and the assembly takes a long time due to the error correction process, which makes it difficult to automate the assembly task. To deal with this problem, a reinforcement learning-based assembly strategy using contact states was proposed to quickly perform the assembly process in an unstructured environment. This method learns to generate a search trajectory to quickly find a hole based on the contact state obtained from the force/torque data. It can also learn the stiffness needed to avoid excessive contact forces during assembly. To verify this proposed method, power connector assembly process was performed 200 times, and it was shown to have an assembly success rate of 100% in a translation error within ±4 mm and a rotation error within ±3.5°. Furthermore, it was verified that the assembly time was about 2.3 sec, including the search time of about 1 sec, which is faster than the previous methods.

A new algorithm for design of support structures in additive manufacturing by using topology optimization

  • Haleh Sadat Kazemi;Seyed Mehdi Tavakkoli
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.93-107
    • /
    • 2023
  • In this paper, a density based topology optimization is proposed for generating of supports required in additive manufacturing to maintain the overhanging regions of main structures during layer by layer fabrication process. For this purpose, isogeometric analysis method is employed to model geometry and structural analysis of main and support structures. In order to model the problem two cases are investigated. In the first case, design domain of supports can easily be separated from the main structure by using distinct isogeometric patches. The second case happens when the main structure itself is optimized by using topology optimization and the supports should be designed in the voids of optimum layout. In this case, in order to avoid boundary identification and re-meshing process for separating design domain of supports from main structure, a parameterization technique is proposed to identify the design domain of supports. To achieve this, two density functions are defined over the entire domain to describe the main structure and supporting areas. On the other hand, since supports are under gravity loads while main structure and its stiffness is not completed during manufacturing process, in the proposed method, stiffness of the main structure is considered to be trivial and the gravity loads are also naturally applied to design support structures. By doing so, the results show reasonable supports are created to protect, continuously, overhanging surfaces of the main structure. Several examples are presented to demonstrate the efficiency of the proposed method and compare the results with literature.

Quasi-steady three-degrees-of-freedom aerodynamic model of inclined/yawed prisms: Formulation and instability for galloping and static divergence

  • Cristoforo Demartino;Zhen Sun;Giulia Matteoni;Christos T. Georgakis
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.57-78
    • /
    • 2023
  • In this study, a generalized three-degree-of-freedom (3-DoF) analytical model is formulated to predict linear aerodynamic instabilities of a prism under quasi-steady (QS) conditions. The prism is assumed to possess a generic cross-section exposed to turbulent wind flow. The 3-DoFs encompass two orthogonal horizontal directions and rotation about the prism body axis. Inertial coupling is considered to account for the non-coincidence of the mass center and the rotation center. The aerodynamic force coefficients-drag, lift, and moment-depend on the Reynolds number based on relative flow velocity, angle of attack, and the angle between the wind and the cable. Aerodynamic forces are linearized with respect to the static equilibrium configuration and mean wind velocity. Routh-Hurwitz and Liénard and Chipart criteria are used in the eigenvalue problem, yielding an analytical solution for instabilities in galloping and static divergence types. Additionally, the minimum structural damping and stiffness required to prevent these instabilities are numerically determined. The proposed 3-DoF instability model is subsequently applied to a conductor with ice accretion and a full-scale dry inclined cable. In comparison to existing models, the developed model demonstrates superior prediction accuracy for unstable regions compared with results in wind tunnel tests.

Prediction Model of Fatigue in Women with Rheumatoid Arthritis (여성 류마티스 관절염 환자의 피로 예측 모형)

  • Lee, Kyung-Sook;Lee, Eun-Ok
    • Journal of muscle and joint health
    • /
    • v.8 no.1
    • /
    • pp.27-50
    • /
    • 2001
  • Rheumatoid arthritis is a chronic systemic autoimmune disease. Although the joints are the major loci of the disease activity, fatigue is a common extraarticular symptom that exists in all gradations of rheumatoid arthritis. Fatigue is defined as a subjective sense of generalized tiredness or exhaustion and has multiple dimensions. Therefore fatigue is a common and frequent problem for those with rheumatoid arthritis. In fact, 88-100% of individuals with rheumatoid arthritis experience fatigue. Especially the degree of fatigue is higher in women than men with rheumatoid arthritis. Despite the importance of fatigue among the patients with rheumatoid arthritis, the mechanism that leads to fatigue in rheumatoid arthritis is not completely understood. This study was intended to test and validate a model to predict fatigue in women with rheumatoid arthritis. Especially it was intended to identify the direct and indirect effects of the variables of pain, disability, depression, sleep disturbance, morning stiffness, and symptom duration to fatigue. Data were collected by questionnaires including Multidimensional Assesment of Fatigue(Tack, 1991), numeric scale of pain, graphic scale of joints, Ritchie Articular Index, Korean Health Assessment Questionnaire(Bae, et al., 1998), Inventory of Function Status(Tulman, et al., 1991), Center for Epidemiologic Studies-Depression, and Korean Sleep Scale(Oh, et al 1998). The sample consisted of 345 women with a mean duration of rheumatoid arthritis for 10.06 years and a mean age of 49.64 years. SPSS win and Win LISREL were used for the data analysis. Structural equation modeling revealed the overall fit of the model. Pain predicted fatigue directly and indirectly through disability, depression, and sleep disturbance. Disability, sleep disturbance predicted fatigue only directly, while depression only indirectly through disability and sleep disturbance. Also morning stiffness and symptom duration predicted fatigue through disability and depression. All predictors accounted for 65% of the variance of fatigue. Depression, pain, and disability predicted sleep disturbance. Depression had reciprocal relationship with disability and they both were predicted by pain directly and indirectly. In summary, pain, depression, disability, sleep disturbance, morning stiffness, and symptom duration contributed to the fatigue of patients with rheumatoid arthritis. The best predictor of fatigue was pain. This finding indicates that the modification of pain, depression, disability, sleep disturbance, morning stiffness could be nursing intervention for relief or prevention of fatigue.

  • PDF

A Study on Seismic Performance Evaluation of Tunnel to Considering Material Nonlinearity (재료의 비선형성을 고려한 터널의 내진성능평가에 관한 연구)

  • Choi, Byoungil;Ha, Myungho;Noh, Euncheol;Park, Sihyun;Kang, Gichun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.92-102
    • /
    • 2022
  • Various numerical analysis models can be used to evaluate the behavior characteristics of tunnel facilities which are representative underground structures. In general, the Mohr-Coulomb model, which is most often used for numerical analysis, is an elastic-perfect plastic behavior model. And the deformation characteristics are the same during the load increase-load reduction phase. So there is a problem that the displacement may appear different from the field situation in the case of excavation analysis. In contrast, the HS-small strain stability model has a wide range of applications for each ground. And it is known that soil deformation characteristics can be analyzed according to field conditions by enabling input of initial elastic modulus and nonlinear curve parameter and so on. However, civil engineers are having difficulty using nonlinear models that can apply material nonlinear properties due to difficulties in estimating ground property coefficients. In this study, the necessity of rational model selection was reviewed by comparing the results of seismic performance evaluation using the Mohr-Coulomb model, which civil engineers generally apply for numerical analysis of tunnels, and the HS Small strain Stiffness model, which can consider ground nonlinearity.

Updating finite element model using dynamic perturbation method and regularization algorithm

  • Chen, Hua-Peng;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.427-442
    • /
    • 2012
  • An effective approach for updating finite element model is presented which can provide reliable estimates for structural updating parameters from identified operational modal data. On the basis of the dynamic perturbation method, an exact relationship between the perturbation of structural parameters such as stiffness change and the modal properties of the tested structure is developed. An iterative solution procedure is then provided to solve for the structural updating parameters that characterise the modifications of structural parameters at element level, giving optimised solutions in the least squares sense without requiring an optimisation method. A regularization algorithm based on the Tikhonov solution incorporating the generalised cross-validation method is employed to reduce the influence of measurement errors in vibration modal data and then to produce stable and reasonable solutions for the structural updating parameters. The Canton Tower benchmark problem established by the Hong Kong Polytechnic University is employed to demonstrate the effectiveness and applicability of the proposed model updating technique. The results from the benchmark problem studies show that the proposed technique can successfully adjust the reduced finite element model of the structure using only limited number of frequencies identified from the recorded ambient vibration measurements.

Update the finite element model of Canton Tower based on direct matrix updating with incomplete modal data

  • Lei, Y.;Wang, H.F.;Shen, W.A.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.471-483
    • /
    • 2012
  • In this paper, the structural health monitoring (SHM) benchmark problem of the Canton tower is studied. Based on the field monitoring data from the 20 accelerometers deployed on the tower, some modal frequencies and mode shapes at measured degrees of freedom of the tower are identified. Then, these identified incomplete modal data are used to update the reduced finite element (FE) model of the tower by a novel algorithm. The proposed algorithm avoids the problem of subjective selection of updated parameters and directly updates model stiffness matrix without model reduction or modal expansion approach. Only the eigenvalues and eigenvectors of the normal finite element models corresponding to the measured modes are needed in the computation procedures. The updated model not only possesses the measured modal frequencies and mode shapes but also preserves the modal frequencies and modes shapes in their normal values for the unobserved modes. Updating results including the natural frequencies and mode shapes are compared with the experimental ones to evaluate the proposed algorithm. Also, dynamic responses estimated from the updated FE model using remote senor locations are compared with the measurement ones to validate the convergence of the updated model.

Development of Laminar Box Manufacturing Technique for Earthquake Engineering (내진 연구를 위한 전단상자 제작기술 개발)

  • 이용재
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.100-107
    • /
    • 2001
  • One major problem in the model testing is the boundary effect and size effect caused by the limit in the size of the container. To overcome this problem, various types of laminar boxes are gradually manufactured and used in the shaking table test, which ideally has zero stiffness to horizontal shear. In this study, a small-scale laminar box is manufactured, which is composed of 6 thin aluminum rectangular hollow plates, and its inside dimensions are 300 mm length by 200 mm width by 350 mm depth. Shaking table tests are performed both with the laminar box and the rigid box under the same conditions, where displacements and accelerations are measured at various points of the box and model ground. As result of analyzing the measured data, during the propagation of input seismic motion from the bottom to the ground surface, the relative displacement of the model ground and the amplification of acceleration is hardly amplified in the rigid box. Because of the effect of stress waves reflecting from the rigid wall, the acceleration is slightly decreased at the edge in the rigid box. The laminar box, manufactured in this study, has a problem in that the soil behavior at the edge of ground surface is affected by the inertia force of the top layer due to its excessive self-weight.

  • PDF

Aluminum Space Frame B.I.W. Optimization Considering Multidisciplinary Design Constraints (다분야 설계 제약 조건을 고려한 알루미늄 스페이스 프레임 차체의 최적 설계)

  • Kim Bum-Jin;Kim Min-Soo;Heo Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents an ASF (Aluminum Space Frame) BIW optimal design, which minimizes the weight and satisfies multi-disciplinary constraints such as the static stiffness, vibration characteristics, low-speed crash, high-speed crash and occupant protection. As only one cycle CPU time for all the analyses is 12 hours, the ASF design having 11-design variable is a large scaled problem. In this study, ISCD-II and conservative least square fitting method is used for efficient RSM modeling. Then, ALM method is used to solve the approximate optimization problem. The approximate optimum is sequentially added to remodel the RSM. The proposed optimization method used only 20 analyses to solve the 11-design variable design problem. Also, the optimal design can reduce the] $15\%$ of total weight while satisfying all of the multi-disciplinary design constraints.

A Study on Calculation of Cross-Section Properties for Composite Rotor Blades Using Finite Element Method (유한요소법 기반의 복합재료 블레이드 단면 특성치 계산에 관한 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Cho, Jin-Yeon;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.442-449
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with solid, thin-walled and compound cross-sections. The weighted-modulus method is introduced to determine the laminated composite material properties. The shear center and the torsion constant for any given section are calculated according to the Trefftz' definition and the St. Venant torsion theory, respectively. The singular value problem of cross-section stiffness properties faced during the section analysis has been solved by performing an eigenvalue analysis to remove the rigid body mode. Numerical results showing the accuracy of the program obtained for stiffness, offset and inertia properties are compared in this analysis. The current analysis results are validated with those obtained by commercial software and published data available in the literature and a good correlation has generally been achieved through a series of validation study.