• Title/Summary/Keyword: stiffness modeling

Search Result 699, Processing Time 0.027 seconds

Molecular Dynamics and Micromechanics Study on Mechanical Behavior and Interfacial Properties of BNNT/Polymer Nanocomposites (분자동역학 전산모사와 미시역학 모델을 이용한 질화붕소 나노튜브/고분자 복합재의 역학적 물성 및 계면특성 예측)

  • Choi, Seoyeon;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.247-253
    • /
    • 2017
  • In this study, the mechanical behavior and interface properties of boron nitride nanotube-poly(methyl methacrylate) nanocomposites are predicted using the molecular dynamics simulations and the double inclusion model. After modeling nanocomposite unit cell embedding single-walled nanotube and polymer, the stiffness matrix is determined from uniaxial tension and shear tests. Through the orientation average of the transversely isotropic stiffness matrix, the effective isotropic elastic constants of randomly dispersed microstructure of nanocomposites. Compared with the double inclusion model solution with a perfect interfacial condition, it is found that the interface between boron nitride nanotube and polymer matrix is weak in nature. To characterize the interphase surrounding the nanotube, the two step domain decomposition method incorporating a linear spring model at the interface is adopted. As a result, various combinations of the interfacial compliance and the interphase elastic constants are successfully determined from an inverse analysis.

Design of 6 DOF Mechanism with Flexure Joints for telecommunication mirror and Experimental Stiffness Modeling (탄성힌지를 이용한 초정밀 통신용 미러 구동 6축 메커니즘 구현과 실험적 강성 모델링)

  • Kang, Byoung Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.169-174
    • /
    • 2019
  • Flexure joints are recently used in the ultra-precision mechanism for a telecommunication mirror stage. Flexure joints have several advantages coming from their monolithic characteristics. They can be used to reduce the size of manipulators or to increase the precision of motion. In our research, 6 dof(degree of freedom) mechanism is suggested for micrometer repeatability using a flexure mechanism. To design the 6-dof motion, the 2-dof planar mechanism are designed and assembled to make the 6-dof motion. To achieve a certain performance, it is necessary to define the performance of mechanism that quantifies the characteristics of flexure joints. This paper addresses the analysis and design of the 6-dof parallel manipulator with a flexure joint using a finite element analysis tool. To obtain experimental result, CCD laser displacement sensor is used for the total displacement and the stiffness for the 6-dof flexure mechanism.

Ultimate Analysis of Reinforced Concrete Beams (철근콘크리트 보의 극한해석)

  • 김태형;김운학;신현목
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.145-155
    • /
    • 1995
  • The purpose of this paper is to present an analysis method which can exactly analyze load-deflection relationships. crack propagations and stresses and strains of steel reinforccnlent and concrete in hehaviors of elastic, mclastic and ultlmate ranges of reinforced concretc beams under monotonically increasing loads. For these purposes, the material nonlinearities are taken into account by comprising the tension. compression and shear models of cracked concrete and a model for reinforcement in the concrete. Smeared crack model is used as a modeling of concrete. The steel reinforcement is assumed to be in an uniaxial stress state and modeled srncaretl layers of eqivalent thickness and line elernents for correct positiori arid behavior. For the verification of application and validity of the method proposed in this paper, several numerical examples are analyzed and compared with those from other researchers. As a results, this method shown in 3.5-15(%) error is correct.

Seismic response and damage development analyses of an RC structural wall building using macro-element

  • Hemsas, Miloud;Elachachi, Sidi-Mohammed;Breysse, Denys
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.447-470
    • /
    • 2014
  • Numerical simulation of the non-linear behavior of (RC) structural walls subjected to severe earthquake ground motions requires a reliable modeling approach that includes important material characteristics and behavioral response features. The objective of this paper is to optimize a simplified method for the assessment of the seismic response and damage development analyses of an RC structural wall building using macro-element model. The first stage of this study investigates effectiveness and ability of the macro-element model in predicting the flexural nonlinear response of the specimen based on previous experimental test results conducted in UCLA. The sensitivity of the predicted wall responses to changes in model parameters is also assessed. The macro-element model is next used to examine the dynamic behavior of the structural wall building-all the way from elastic behavior to global instability, by applying an approximate Incremental Dynamic Analysis (IDA), based on Uncoupled Modal Response History Analysis (UMRHA), setting up nonlinear single degree of freedom systems. Finally, the identification of the global stiffness decrease as a function of a damage variable is carried out by means of this simplified methodology. Responses are compared at various locations on the structural wall by conducting static and dynamic pushover analyses for accurate estimation of seismic performance of the structure using macro-element model. Results obtained with the numerical model for rectangular wall cross sections compare favorably with experimental responses for flexural capacity, stiffness, and deformability. Overall, the model is qualified for safety assessment and design of earthquake resistant structures with structural walls.

Auto-parametric resonance of framed structures under periodic excitations

  • Li, Yuchun;Gou, Hongliang;Zhang, Long;Chang, Chenyu
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.497-510
    • /
    • 2017
  • A framed structure may be composed of two sub-structures, which are linked by a hinged joint. One sub-structure is the primary system and the other is the secondary system. The primary system, which is subjected to the periodic external load, can give rise to an auto-parametric resonance of the second system. Considering the geometric-stiffness effect produced by the axially internal force, the element equation of motion is derived by the extended Hamilton's principle. The element equations are then assembled into the global non-homogeneous Mathieu-Hill equations. The Newmark's method is introduced to solve the time-history responses of the non-homogeneous Mathieu-Hill equations. The energy-growth exponent/coefficient (EGE/EGC) and a finite-time Lyapunov exponent (FLE) are proposed for determining the auto-parametric instability boundaries of the structural system. The auto-parametric instabilities are numerically analyzed for the two frames. The influence of relative stiffness between the primary and secondary systems on the auto-parametric instability boundaries is investigated. A phenomenon of the "auto-parametric internal resonance" (the auto-parametric resonance of the second system induced by a normal resonance of the primary system) is predicted through the two numerical examples. The risk of auto-parametric internal resonance is emphasized. An auto-parametric resonance experiment of a ${\Gamma}$-shaped frame is conducted for verifying the theoretical predictions and present calculation method.

A Study for the Screen Door System Driving Stiffness of Motor Control Method (모터 제어 방식의 스크린 도어 시스템 구동강성 검증)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2385-2390
    • /
    • 2015
  • In the beginning run, urban railway had been required as transportation. But now days urban railway have stayed in the platform for long time, the platform is faced the problem that is improvement of environment as one of the living space. Thus, sliding automatic door on the basis of screen door have used in huge distribution market, hospital, restaurant and public office because it is comfortable that customer's convenience and entrance are controled. So screen door not only requires customer's convenience and safe, clean area and energy conservation but demands optimal design technology development of screen door system that is confirmed by element parts of design and confidence. In this paper, For secure confidence of screen door, after as modeling roller and frame's system, confirming the result for qualification of driving stiffness. And then it suggests that it is possible to increase performance and declines fraction defective of element's part.

Mechanical behavior of the composite curved laminates in practical applications

  • Liu, Lonquan;Zhang, Junqi;Wang, Hai;Guan, Zhongwei
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1095-1113
    • /
    • 2015
  • In order to determine the mechanical behavior of the curved laminates in practical applications, three right-angled composite brackets with different lay-ups were investigated both experimentally and numerically. In the experimental, quasi-static tests on both unidirectional and multidirectional curved composite brackets were conducted to study the progressive failure and failure modes of the curved laminates. In the numerical modeling, three-dimensional finite element analysis was used to simulate the mechanical behavior of the laminates. Here, a strength-based failure criterion, namely the Ye criterion, was used to predict the delamination failure in the composite curved laminates. The mechanical responses of the laminate subjected to off-axis tensile loading were analyzed, which include the progressive failure, the failure locations, the load-displacement relationships, the load-strain relationships, and the stress distribution around the curved region of the angled bracket. Subsequently, the effects of stacking sequence and thickness on the load carrying capacity and the stiffness of the laminates were discussed in detail. Through the experimental observation and analysis, it was found that the failure mode of all the specimens is delamination, which is initiated abruptly and develops unstably on the symmetric plane, close to the inner surface, and about $29^{\circ}$ along the circumferential direction. It was also found that the stacking sequence and the thickness have significant influences on both the load carrying capacity and the stiffness of the laminates. However, the thickness effect is less than that on the curved aluminum plate.

Optimum Structural Design of Space truss with consideration in Snap-through buckling (뜀-좌굴을 고려한 공간 트러스의 최적구조설계에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae;Choi, Jae-Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.89-98
    • /
    • 2012
  • This study investigates the optimum structural design of space truss considering global buckling, and is to obtain the minimal weight of the structure. The mathematical programming method is used for optimization of each member by member force. Besides, dynamic programming method is adapted for consideration in snap-through buckling. The mathematical modeling for optimum design of truss members consists of objective function of total weight and constrain equations of allowable tensile (or compressive) stress and slenderness. The tangential stiffness matrix is examined to find the critical point on equilibrium path, and a ratio of the buckling load to design load is reflected in iteration procedures of dynamic programming method to adjust the stiffness of space truss. The star dome is examined to verify the proposed optimum design processor. The numerical results of the model are conversed well and satisfied all constrains. This processor is a relatively simple method to carry out optimum design with consideration in global buckling, and is viable in practice with respect to structural design.

A prediction of Ring Frame Composite Properties Using Discretization Method (이산화 기법을 이용한 링프레임 복합재의 기계적 물성 예측)

  • Jeon, Yong Un;Kim, Yong Ha;Kim, Pyung Hwa;Kim, Hwi yeop;Park, Jung Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.939-941
    • /
    • 2017
  • The use of composites is increasing for lightweight aerospace structures. Among these structures, the ring frame and the parts of the projectile body are mainly made of a fiber reinforced composite material which is less susceptible such as delamination to structural damage. As the use of fiber reinforced composites increases, interest in modeling efficient methods of stiffness and strength is increasing. This paper predict the mechanical strength according to the repeating unit cell(RUC) of the 2-D triaxial braided composites of fiber reinforced composites. Yarn slice definition, incremental approach and stiffness reduction model were used as strength prediction. Finally, the results of strength prediction are verified by comparing with experimental data of 2-D triaxial braided composites specimens.

  • PDF

Theoretical Modeling of Surface Wave Propagation for SASW Testing Method (수중 주파수영역표면파괴기법의 역해석 과정에서 적용되는 파동해석기법)

  • Lee, Byung-Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.251-260
    • /
    • 2000
  • Applicabilities of two numerical methods, the 2-dimensional and the 3-dimensional method, are evaluated to inverse test results obtained from the underwater SASW(Spectral -Analysis-of-Surface-Waves) method. As a result of this study, it has been found that the 2-dimensional method can supposed to be applicable for the cases where stiffness of soil layer increases gradually with depth, and the stiffness is relatively low. For the other cases, however, it has been concluded that the 3-dimensional method needs to be applied to determine realistic theoretical dispersion curves. An example is also shown that in situ soil profile underwater is estimated from experimental dispersion curves using the 3-dimensional method. As a results, it can be concluded that the underwater SASW method can be effectively applied to explore the underwater soil condition.

  • PDF