• Title/Summary/Keyword: stiffness modeling

Search Result 699, Processing Time 0.022 seconds

Secant Stiffness Analysis Method for Earthquake Design of Reinforced Concrete Structures (철근콘크리트 구조물의 내진설계를 위한 할선강성해석법)

  • Park, Hong-Gun;Kim, Chang-Soo;Eom, Tae-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.985-988
    • /
    • 2008
  • A linear analysis method using reduced secant stiffness was developed for inelastic earthquake design of reinforced concrete structures. In the proposed method, the beam-column element and plane element, which are the same as used in conventional elastic analysis, are used for structural modeling. Based on the structural plastic mechanism intended by engineer, the distribution of inelastic members is determined. The secant stiffness of the inelastic members is determined based on the target ductility of the structure. Inelastic strengths of the members are calculated by using linear analysis on the structure modeled with secant stiffness. Plastic rotations in the inelastic members are calculated with the nodal rotations resulting from the secant stiffness analysis. For verification, the proposed method was applied to the inelastic earthquake designs of a moment-resisting frame and a dual system of two dimensions, and also a dual system of three dimensions.

  • PDF

Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration (궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구)

  • Jung-Youl Choi;Sang-Wook Park;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1057-1063
    • /
    • 2023
  • The urban railway sleeper floating track, the subject of this study, is an anti-vibration track to reduce vibration transmitted to the structure. currently, the replacement cycle of resilience pad for sleeper floating tracks is set and operated based on load. however, most previous studies were conducted on load-based structural safety aspects, such as fatigue life evaluation of sleeper anti-vibration pads and increase in track impact coefficient and track support stiffness due to increase in spring stiffness. therefore, in this study, we measure the vibration acceleration of the ballast for each analysis section and use the results of 7 million fatigue tests to calculate the spring stiffness of the resilience pad for each section. the spring stiffness of the resilience pad calculated for each section was set as the analysis data and the concrete vibration acceleration was derived analytically. the adequacy of analysis modeling was verified as the analyzed concrete bed vibration acceleration for each section was within the field-measured concrete bed vibration acceleration range. using the vibration acceleration curve according to the derived spring stiffness change, the spring stiffness of the resilience pad is estimated from the measured vibration acceleration. therefore, we would like to present a technique that can estimate the spring stiffness of resilience pad of a running track using the vibration acceleration of the measured concrete bed.

Rotor Stability and Whirl Flutter Analysis of Smart UAV (스마트무인기 로터 안정성 및 훨플러터 해석)

  • Lee, Myeonk-Kyu;Shen, Jinwei
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.205-212
    • /
    • 2008
  • This paper describes the modeling data and final analysis results of rotor resonance, rotor aeroelastic stability and whirl flutter stability for Smart UAV (SUAV). The effects of wing beamwise, chordwise and torsional stiffness on the whirl flutter stability were investigated considering the possibility of design change of SUAV wing structure. The parametric study showed that wing torsional and beamwise stiffness changes have much stronger influence on the wing mode damping than chordwise stiffness. It was analytically demonstrated that the final designed rotor system is aeroelastically stable and free from resonance, and that rotor/pylon/wing system of SUAV TR-S4 has enough rotor stability and whirl flutter stability margin.

  • PDF

Stiffness Modeling of Toroidally-Wound BLDC Machine (환형권선 BLDC 전동기의 강성계수 모델링)

  • Lee, Hyun-Chu;Yoo, Seong-Yeol;Noh, Myoung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • Toroidally-wound brushless direct-current (BLOC) machines are compact, highly efficient, and can work across a large magnetic gap. For these reasons, they have been used in pumps, flywheel energy storage systems and left ventricular assist devices among others. The common feature of these systems is a spinning rotor supported by a set of (either mechanical or magnetic) bearings. From the view point of dynamics, it is desirable to increase the first critical speed of the rotor so that it can run at a higher operating speed. The first critical speed of the rotor is determined by the radial stiffnesses of the bearings and the rotor mass. The motor also affects the first critical speed if the rotor is displaced from the rotating center. In this paper, we analytically derive the flux density distribution in a toroidally-wound BLOC machine and also derive the negative stiffness of the motor, based on the assumption that the rotor displacement perturbs the flux density distribution linearly. The estimated negative stiffness is validated by finite element analyses.

Analytical Studies for SASW Measurements Underwater

  • Lee, Byung-Sik
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.53-62
    • /
    • 1997
  • Analytical studies were conducted to develop the Spectral-Analysis-of-Surface-Waves (SASW) method for underwater use. For the precise estimation of the in-situ soil stiffness profile from SASW measurements, it is essential to determine economical and reasonable theoretical dispersion curves reflecting various experimental conditions. In this paper, therefore, analytical methods are mainly discussed, which were developed to determine theoretical dispersion curves of surface waves propagated along the soil-water interface. Application of the analytical methods is then illustrated by an example involving estimation of a stiffness profile through a forward modeling process of SASW measurements. Applicabilities of the SASW method as well as the developed analytical methods are evaluated, respectively, from the example.

  • PDF

Dynamic Modeling and Analysis of Flexible Mechanism With Joint Clearance (유연한 기구의 틈새관절 모델링 및 해석방법에 관한 연구)

  • 홍지수;김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3109-3117
    • /
    • 1994
  • To operate a flexible mechanism in high speed its weight must be reduced as far as the structural strength does not decrease too much, but a light-weighted mechanism causes undesirable elastodynamic responses deteriorating the system performance. Besides, clearance within the connections of mechanisms causes rapid wear, increased noise and vibration. Even if the problems described above must be considered in the initial design stage, there has been no effective design process which takes account of the correlation between dynamic characteristics of flexible mechanism and the clearance effect at the joint. In this study, the generalized elastodynamic governing equations which include dynamic characteristics and boundary conditions of flexible mechanism are derived by variational calculus and solved by using FFM theory. To take the clearance effect at joint into account a new dynamic model is presented and also the method of modified stiffness/damping matrix is proposed to activate the dynamic clearance model, which cooperates with the developed governing equation very easily. As the results of this study, the proposed method(modified stiffness/damping matrix) to calculate clearance effect was proved to be superior to the existing one(force reaction method) in solution convergency and calculation performance. Besides this method can be easily adopted to the complex shape joint without calculation of reaction force direction.

An Efficient Transmissibility-design Technique for Pneumatic Vibration Isolator (지반진동절연을 위한 공압제진대의 전달률 설계기법)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.411-423
    • /
    • 2008
  • Pneumatic vibration isolator has a wide application for ground-vibration isolation of vibration-sensitive equipments. Recent advances In precision machine tools and instruments such as nano-technology or medical devices require a better isolation performance, which can be efficiently done by precise modeling- and design- of the isolation system. This paper will discuss an efficient transmissibility design method for pneumatic vibration isolator by employing the complex stiffness model of dual-chamber pneumatic spring developed in our previous research. Three design parameters of volume ratio between the two pneumatic chambers, the geometry of capillary tube connecting the two pneumatic chambers and finally the stiffness of diaphragm necessarily employed for prevention of air leakage were found to be important factors in transmissibility design. Based on design technique that maximizes damping of dual-chamber pneumatic spring, trade-off among the resonance frequency of transmissibility, peak transmissibility and transmissibility in high frequency range was found, which was not ever stated in previous researches. Furthermore this paper will discuss about negative role of diaphragm in transmissibility design. Then the design method proposed in this paper will be illustrated through experiment at measurements.

Hysteretic behaviors of pile foundation for railway bridges in loess

  • Chen, Xingchong;Zhang, Xiyin;Zhang, Yongliang;Ding, Mingbo;Wang, Yi
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-331
    • /
    • 2020
  • Pile foundation is widely used for railway bridges in loess throughout northwestern China. Modeling of the loess-pile interaction is an essential part for seismic analysis of bridge with pile foundation at seismically active regions. A quasi-static test is carried out to investigate the hysteretic behaviors of pile foundation in collapsible loess. The failure characteristics of the bridge pile-loess system under the cyclic lateral loading are summarized. From the test results, the energy dissipation, stiffness degradation and ductility of the pile foundation in loess are analyzed. Therefore, a bilinear model with stiffness degradation is recommended for the nonlinearity of the bridge pier-pile-loess system. It can be found that the stiffness of the bridge pier-pile-loess system decreases quickly in the initial stage, and then becomes more slowly with the increase of the displacement ductility. The equivalent viscous damping ratio is defined as the ratio of the dissipated energy in one cycle of hysteresis curves and increases with the lateral displacement.

Study on the Static and Dynamic Stiffness Coefficients of Rubbers Connector by Using Finite Element Method (유한요소법을 이용한 고무 연결요소의 정-동강성 계수에 관한 연구)

  • 박노길;박성태
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.103-113
    • /
    • 1995
  • Since the mechanical properties of the rubber connectors used in the vehicle structures are sensitive on the dynamic characteristics of the system, they must be exactly evaluated. In this paper, both finite deformation theory and Hookean model are considered to calculate the stiffness coefficients of rubber connectors. An expert system is developed by using finite element method. When the equivalent stiffness coefficients on the same kinds of isolators used in actual vehicles were emperically examined, the results were largely dispersed due to the lack of the quality control on the material properties. To compensate the errors caused by the mathematical modeling and the mechanical properties, a practical method which identifies the shear and bulk moduli of rubber with the experimented overall force-deformation curves is suggested and applied to the engine isolators of vehicle.

  • PDF

Nonlinear Hysteretic Behavior of Hybrid Steel Beams with Reinforced Concrete Ends (단부 철근콘크리트 중앙부 철골조로 이루어진 혼합구조부의 비선형 이력거동)

  • 이은진;김욱종;문정호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.379-387
    • /
    • 2002
  • This paper presents an analytical model on nonlinear hysteretic behavior of hybrid steel beam with reinforced concrete ends. The modeling method and appropriate coefficients with IDARC2D were proposed from the comparison with previous test results. Since the polygonal model of IDARC2D nay overestimate, new analytical model with the initial stiffness reduction coefficient was proposed. The hysteretic coefficients for the analysis of the hybrid steel beam with reinforced concrete ends were also presented. The analytical results were compared with previous experiments. The initial stiffness and the strength were predicted with less than 5% error and 10% error, respectively.