• 제목/요약/키워드: stiffness matrix method

검색결과 571건 처리시간 0.027초

A simple method of stiffness matrix formulation based on single element test

  • Mau, S.T.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.203-216
    • /
    • 1999
  • A previously proposed finite element formulation method is refined and modified to generate a new type of elements. The method is based on selecting a set of general solution modes for element formulation. The constant strain modes and higher order modes are selected and the formulation method is designed to ensure that the element will pass the basic single element test, which in turn ensures the passage of the basic patch test. If the element is to pass the higher order patch test also, the element stiffness matrix is in general asymmetric. The element stiffness matrix depends only on a nodal displacement matrix and a nodal force matrix. A symmetric stiffness matrix can be obtained by either modifying the nodal displacement matrix or the nodal force matrix. It is shown that both modifications lead to the same new element, which is demonstrated through numerical examples to be more robust than an assumed stress hybrid element in plane stress application. The method of formulation can also be used to arrive at the conforming displacement and hybrid stress formulations. The convergence of the latter two is explained from the point of view of the proposed method.

전달행렬과 강성행렬에 의한 탄성지반상의 원형탱크해석 (An Analysis of Cylindrical Tank of Elastic Foundation by Transfer Matrix and Stiffness Matrix)

  • 남문희;하대환;이관희;장홍득
    • 전산구조공학
    • /
    • 제10권1호
    • /
    • pp.193-200
    • /
    • 1997
  • 탄성지반상의 원형탱크해석에는 여러방법이 있지만 최근에 널리 사용되는 방법은 유한요소법이다. 그러나 이 방법은 탄성지반상의 탱크해석시 많은 절점수가 필요하게 된다. 이것은 곧 많은 계산기 기억용량 및 계산시간 뿐만 아니라 노력이 필요하게 된다. 본 연구에서는 유사탄성지반보(Analogy of Beam on Elastic Foundation) 및 지반강성행렬(Foundation Stiffness Matrix)을 이용하여 축대칭하중을 받는 축대칭탱크를 뼈대 구조화 할 수 있었다. 또한 이 뼈대 구조를 유한요소로 분할하고, 각 요소 강성행렬(Stiffness Matrix)을 전달행렬(Transfer Matrix)로 전환하여 전달행렬법으로 원형탱크를 해석 할 수 있었다. 유한요소법과 전달행렬법을 탄성지반상의 원형탱크 해석에 적용한 결과 두 해석결과의 차이는 없고, 전달행렬법을 적용한 경우 최종 연립방정식수가 4개로 간략화 되었다.

  • PDF

유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석 (Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method)

  • 조재혁;김현욱;최영휴
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

탄성지반위의 보의 엄밀한 강성계산을 위한 개선된 해석방법 (Improved Numerical Method Evaluating Exact Static Element Stiffness Matrices of Beam on Elastic Foundations)

  • 김남일;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.589-596
    • /
    • 2006
  • An improved numerical method to obtain the exact element stiffness matrix is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric thin-walled beam-columns with two-types of elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column. This numerical technique is firstly accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Then exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions.

  • PDF

A simplified geometric stiffness in stability analysis of thin-walled structures by the finite element method

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.313-321
    • /
    • 2012
  • Vibration analysis of a thin-walled structure can be performed with a consistent mass matrix determined by the shape functions of all degrees of freedom (d.o.f.) used for construction of conventional stiffness matrix, or with a lumped mass matrix. In similar way stability of a structure can be analysed with consistent geometric stiffness matrix or geometric stiffness matrix with lumped buckling load, related only to the rotational d.o.f. Recently, the simplified mass matrix is constructed employing shape functions of in-plane displacements for plate deflection. In this paper the same approach is used for construction of simplified geometric stiffness matrix. Beam element, and triangular and rectangular plate element are considered. Application of the new geometric stiffness is illustrated in the case of simply supported beam and square plate. The same problems are solved with consistent and lumped geometric stiffness matrix, and the obtained results are compared with the analytical solution. Also, a combination of simplified and lumped geometric stiffness matrix is analysed in order to increase accuracy of stability analysis.

Dynamic stiffness matrix method for axially moving micro-beam

  • Movahedian, Bashir
    • Interaction and multiscale mechanics
    • /
    • 제5권4호
    • /
    • pp.385-397
    • /
    • 2012
  • In this paper the dynamic stiffness matrix method was used for the free vibration analysis of axially moving micro beam with constant velocity. The extended Hamilton's principle was employed to derive the governing differential equation of the problem using the modified couple stress theory. The dynamic stiffness matrix of the moving micro beam was evaluated using appropriate expressions of the shear force and bending moment according to the Euler-Bernoulli beam theory. The effects of the beam size and axial velocity on the dynamic characteristic of the moving beam were investigated. The natural frequencies and critical velocity of the axially moving micro beam were also computed for two different end conditions.

Second-order analysis of planar steel frames considering the effect of spread of plasticity

  • Leu, Liang-Jenq;Tsou, Ching-Huei
    • Structural Engineering and Mechanics
    • /
    • 제11권4호
    • /
    • pp.423-442
    • /
    • 2001
  • This paper presents a method of elastic-plastic analysis for planar steel frames that provides the accuracy of distributed plasticity methods with the computational efficiency that is greater than that of distributed plasticity methods but less than that of plastic-hinge based methods. This method accounts for the effect of spread of plasticity accurately without discretization through the cross-section of a beam-column element, which is achieved by the following procedures. First, nonlinear equations describing the relationships between generalized stresses and strains of the cross-section are derived analytically. Next, nonlinear force-deformation relationships for the beam-column element are obtained through lengthwise integration of the generalized strains. Elastic-plastic flexibility coefficients are then calculated by differentiating the above element force-deformation relationships. Finally, an elastic-plastic stiffness matrix is obtained by making use of the flexibility-stiffness transformation. Adding the conventional geometric stiffness matrix to the elastic-plastic stiffness matrix results in the tangent stiffness matrix, which can readily be used to evaluate the load carrying capacity of steel frames following standard nonlinear analysis procedures. The accuracy of the proposed method is verified by several examples that are sensitive to the effect of spread of plasticity.

감도해석을 이용한 구조물의 손상위치 및 크기해석 (Analysis of a Structural Damage Detection Using Sensitivity Analysis)

  • 이정윤
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.50-55
    • /
    • 2003
  • This study proposed the analysis of damage detection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The present approach allows the use of composite data which consist of eigenvalues and eigenvectors. The suggested method is applied to examples of a cantilever and 3 degree of freedom system by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

동특성 변화를 이용한 구조물의 손상 탐지 해석 (Analysis of a Structural Damage Detection using the Change of Dynamic Characteristics)

  • 이정윤;이정우;이준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.760-763
    • /
    • 2003
  • This study proposed the analysis of damage defection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

  • PDF

동강성법을 이용한 코일스프링의 진동 해석 (Vibration Analysis of a Coil Spring by Using Dynamic Stiffness Method)

  • 이재형;김성걸;허승진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1933-1938
    • /
    • 2000
  • The partial differential equations for a coil spring derived from Timoshenko beam theory and Frenet formulae. Dynamic stiffness matrix of a coil spring composed of a circular wire is assembled by using dispersion relationship, waves and natural frequencies. Natural frequencies are obtained from maxima in the determinant of inverse of a dynamic stiffness matrix with appropriate boundary conditions. The results of the dynamic stiffness method are compared with those of transfer matrix method, finite element method and test.

  • PDF