• Title/Summary/Keyword: stiffness and ductility

Search Result 568, Processing Time 0.019 seconds

Experimental Evaluation of New Seismic Connections between Rectangular Steel Tube Column and H-shaped Beam (각형강관 기둥-H형강 보 신형상 내진접합부의 실험적 평가)

  • Jin, Jooho;Kim, DooHwan;Kim, Hyunsook;Shin, Jinwon;Park, Kooyun;Lee, Kyungkoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • A through diaphragm is often used to ensure their stiffness for moment-resisting connections using rectangular steel-tube column and H-shaped beam. The through-diaphragm connections, however, have some difficulties for their applicabilities to the field due to the complexity of the fabrication and construction processes. This study thus proposes a new modular system of steel structures assembled only using bolts without welding, by bringing a connection module composed of rectangular steel-tube column, H-shaped beam and oneway bolt onto the site. An experimental study to evaluate the seismic performance of the proposed connection details based on the new modular system is then conducted. The length and type of the inner reinforcement plate are considered as the primary design parameters, and the strength, stiffness, ductility and energy dissipation capability of the new connections are experimentally analyzed by comparison to those of conventional through diaphragm connections.

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance (내진성능평가를 위한 비선형 직접스펙트럼법의 특성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

Some Critical Problems in Seismic Design of High-Rise RC Building frame Systems (고층 RC 건물골조시스템의 내진설계상 몇 가지 주요 문제점)

  • Lee Han-Seon;Jeong Seong-Wook;Ko Dong-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.727-734
    • /
    • 2005
  • High-rise residential buildings these days tend to adopt a building frame system as primary earthquake resisting structural system for some architectural reasons. But there exist several ambiguities in designing such building frame systems according to current codes with regards to : the effective stiffness property of RC cracked section in static and dynamic analyses, analytical model to evaluate story drift ratio, and deformation compatibility requirements of frames. The comparative study for these issues by appling KBC 2005 to a typical building frame system shows that demands of member strength and story drift ratio can be different significantly depending on engineer's Interpretation and application of code requirements. And a building frame system can be noneconomical, compared with the dual system, because of higher demands on strength or ductility in both frames and shear walls.

Pseudo Dynamic Test Study on Seismic Performance Evaluation of RC Columns Retrofitted by PolyUrea (내진보강용 폴리우레아로 보강된 철근콘크리트 기둥의 내진성능 평가에 대한 유사동적실험 연구)

  • Cho, Chul Min;Lee, Doo Sung;Kim, Tae Kyun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.289-301
    • /
    • 2017
  • As earthquakes have frequently happened all over the world, huge losses of human life and property have occurred. Therefore, retrofitting and strengthen technologies of non-seismically designed structures in Korea are urgent. Also, there has been a growing interest about seismic retrofitting, where researches on the topic have been actively pursued in Korea. The study results showed that ductility inducing retrofitting method is more superior stiffness inducing method. In Japan, Super Reinforcement with Flexibility (SRF) was introduced. Therefore, in this study, seismic performance evaluation was performed through pseudo dynamic test and uniaxial compression test for RC column retrofitted by PolyUrea for ductility inducing retrofitting material. Uniaxial compression test results showed that strength of all specimens retrofitted by PolyUrea was higher than that of RC specimens. Also, all specimens retrofitted by PolyUrea also showed ductile fracture behavior. In pseudo dynamic test, by appling real earthquake record, the seismic behavior of RC column reinforced by PolyUrea was evaluated through relative displacement, reinforcement strain, displacement ductility, and dissipation energy. The results showed that PolyUrea helped to enhance seismic performance of RC columns.

Axial Load Performance of Circular CFT Columns with Concrete Encasement (콘크리트피복 원형충전강관 기둥의 압축성능)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • An experimental study was performed to investigate the axial-flexural load-carrying capacity of concrete-encased and-filled steel tube (CEFT) columns. To restrain local buckling of longitudinal bars and to prevent premature failure of the thin concrete encasement, the use of U-cross ties was proposed. Five eccentrically loaded columns were tested by monotonic compression. The test parameters were axial-load eccentricity, spacing of ties, and the use of concrete encasement. Although early cracking occurred in the thin concrete encasement, the maximum axial loads of the CEFT specimens generally agreed with the strengths predicted considering the full contribution of the concrete encasement. Further, due to the effect of the circular steel tube, the CEFT columns exhibited significant ductility. The applicability of current design codes to the CEFT columns was evaluated in terms of axial-flexural strength and flexural stiffness.

Earthquake Resistance of Beam-Column Connection of Precast Concrete U-Shaped Shell Construction (프리캐스트 콘크리트 U형 쉘 공법 보-기둥 접합부의 내진성능)

  • Im, Hyeong-Ju;Park, Hong-Gun;Eom, Tae-Sung;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.741-751
    • /
    • 2010
  • An experimental study was performed to investigate the earthquake resistance of the beam-column connections as a part of a precast concrete moment-resisting frame that uses precast concrete U-shaped shells for the beams. Five full-scale precast concrete specimens and one conventional monolithic concrete specimen were tested under cyclic loading. The parameters for this test were the reinforcement ratio, stirrup spacing, and end-strengthening details of the precast beam shell. The test results showed that regardless of the test parameters, the precast concrete beam-column connections showed good load-carrying capacity and deformation capacity, which were comparable to those of conventional monolithic concrete specimen. However, at large deformations, the beam-column connections of the precast concrete specimens were subjected to severe strength degradation due to diagonal shear cracks and the bond-slip of re-bars at the joint region. For this reason, the energy dissipation capacity and stiffness of the precast concrete specimens were significantly less than those of the cast-in-place specimen.

Seismic Performance Evaluation of Reinforced Concrete Frames Reinforced with Chevron Bracing System (역V형 가새로 보강된 RC 골조의 내진성능평가)

  • Ha, Heonjun;Oh, Keunyeong;Lee, Kangmin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2018
  • In this study, seismic performance of existing RC frames reinforced with steel chevron bracing systems was experimentally evaluated. For this purpose, the unreinforced base specimen and seismically reinforced specimens with steel chevron bracing systems were fabricated and tested. Both strength and stiffness of the reinforced specimens were targeted about 2-3 times larger than the base specimen. Test results showed that the stiffness, strength, and ductility of the reinforced specimens considerably improved than those of unreinforced base specimen. Therefore, the results from this study could offer the basic information on the developing design guideline for the seismic reinforcement of RC frames.

An Experimantal Study on the Flexible Capacity of New Shape Flat Deck Plate(ACE-DECK) for Using Composite Slabs Systems. (신형상의 합성용 평데크플래이트(ACE-DECk)의 휨성능에 대한 실험적 연구)

  • Oh, Sang-Hoon;Jang, In-wha;Bae, Kyu-woong;Heo, Byung-wook;Yang, Myung-sook
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.265-277
    • /
    • 2001
  • This paper present a study on the flexural behavior of composite slabs using the flat-type profiled(ACE-DECK) steel deck plate which are developed recently. Forty eight composite slabs with different thickness, span, shear span and deck profile were tested to evaluate the flexural capacity and compared to the existing traperzodial deck profiles (KEM, ALPHA-DECK) According to the experiment results, flat-type profiled steel deck plate indicates more excellent capacity than existing traperzodial deck profiles in strength, stiffness, and ductility. The equation proposed by ASCE code for the effective moment of inertia are more acceptable than the equation proposed by ACI code. Thus, in this paper, test results are summarized by strength, stiffness, and deformation capacity for the specimens.

  • PDF

Dynamic Instability of Strength-Limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 동적 불안정)

  • Han, Sang-Whan;Kim, Jong-Bo;Bae, Mun-Su;Moon, Ki-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.23-29
    • /
    • 2008
  • This study investigates the dynamic instability of strength-limited bilinear single degree of freedom (SDF) systems under seismic excitation. The strength-limited bilinear hysteretic model best replicates the hysteretic behavior of the steel moment resisting frames. To estimate the dynamic instability of SDF systems, the collapse strength ratio is used, which is the yield-strength reduction factor when collapse occurs. Statistical studies are carried out to estimate median collapse strength ratios and those dispersions of strength-limited bilinear SDF systems with given natural periods, hardening stiffness ratios, post-capping stiffness ratios, ductility and damping ratios ranging from 2 to 20% subjected to 240 earthquake ground motions recorded on stiff soil sites. Equations to calculate median and standard deviation of collapse strength ratios in strength-limited bilinear SDF systems are obtained through nonlinear regression analysis. By using the proposed equations, this study estimated the probabilistic distribution of collapse strength ratios, and compared this with the exact values from which the accuracy of the proposed equations was verified.

Inelastic Displacement Ratio for Strength-limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 비탄성 변위비)

  • Han, Sang-Whan;Lee, Tae-Sub;Seok, Seung-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2010
  • This study evaluated the effect of vibration, level of lateral yielding strength, site conditions, ductility factor, strain-hardening ratio, and post-capping ratio of the strength limited bilinear SDF systems on the inelastic displacement ratio. The nonlinear response history analysis was conducted using 240 ground motions which were collected at the sites classified as site classes B, C, and D according to the NEHRP. To account for the P-$\Delta$ effects, this study considered negative stiffness ratios ranging from -0.1 to -0.5 of elastic stiffness. Four different damping ratios are used: 2, 5, 10, and 20%. From this study, an equation of inelastic displacement ratio was proposed using nonlinear regression analysis.