• Title/Summary/Keyword: stiffening

Search Result 367, Processing Time 0.02 seconds

Concrete-filled rectangular hollow section X joint with Perfobond Leister rib structural performance study: Ultimate and fatigue experimental Investigation

  • Liu, Yongjian;Xiong, Zhihua;Feng, Yuncheng;Jiang, Lei
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.455-465
    • /
    • 2017
  • This paper presents a series of ultimate and fatigue experimental investigation on concrete-filled rectangular hollow section (CRHS) X joints with Perfobond Leister rib (PBR) under tension. A total of 15 specimens were fabricated, in which 12 specimens were tested under ultimate tension and 3 specimens were investigated in fatigue test. Different parameters including PBR stiffening, brace-to-chord ratio (${\beta}$) and inclined angle (${\theta}$) were considered in the test. Each joint was tested to failure under tension load. Obtained from test result, PBR was found to improve the tension strength and fatigue durability of CRHS joint substantially. Concrete dowel consisted by PBR and concrete inside the chord stiffened the joint, which leaded to a combination failure mode of punching shear and chord plastification of CRHS joint under tension. Finite element analysis validated the compound failure mode. Stress concentration on typical spot of CRHS joint was mitigated by PBR which was observed from fatigue test. Initial fatigue crack presented in CRHS joint with PBR also differentiated with the counterpart without PBR.

Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT

  • Abdelrahman, Wael G.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • Several classical and higher order plate theories were used to study the buckling of functionally graded material (FGM) plates. In the great majority of research, a power function is used to represent metal and ceramic material transverse distribution (P-FGM). Therefore, the effect of having other transverse variation of material properties on the buckling behavior of thick rectangular FGM plates was not properly addressed. In the present work, this effect is investigated using the Third order Shear Deformable Theory (TSDT) for the case of simply supported FGM plate. Both a sigmoid function and an exponential functions are used to represent the transverse gradual property variation. The plate governing equations are combined with a Navier type expanded solution of the unknown displacements to derive the buckling equation in terms of the pre-buckling in-plane loads. Finally, the critical in-plane load is calculated for the different buckling modes. The model is verified by a comparison of the calculated buckling loads with available published results of Al-SiC P-FGM plates. The conducted parametric study shows that manufacturing FGM plates with sigmoid variation of properties in the thickness direction increases the buckling load considerably. This improvement is found to be more significant for the case of thick plates than that of thin plates. Results also show that this stiffening-like effect of the sigmoid function profile is more evident for cases where the in-plane loads are applied along the shorter edge of the plate.

Static and Natural Vibration Analyses of Bending Problems Using 5-Node Equivalent Element (5절점 상당요소에 의한 굽힘문제의 정적해석 및 자유진동해석)

  • Gwon, Young-Doo;Yun, Tae-Hyeok;Jeong, Seung-Kap;Park, Hyeon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1320-1332
    • /
    • 1996
  • In the present study, we consider modified 5-node equivalent solid element which has smallest degree of freedom among 2-dimensional solid elements accounting bending deformation as well as extensional and shear deformations, We shall investigate static and dynamic characteristics of this element, which is very effective in thin beam, thick beam, large displacement problems, beam of variable thickness, and asymmetrically stepped beam, etc., as well as relatively simple problems of beam. The degree of freedom of this element is 10, which is smaller than 18 of 9-node element, 16 of 8-node elemtns, 12 of modified 6-node element and Q6 element. Therefore, this element is expected to broaden the effective range of application of the solid elements in the bending problems further.

Behavior of Reinforced Dapped End Beams with T-headed Bar and Steel Fibers (헤디드 바와 강섬유로 보강된 Dapped End Beam의 구조 거동에 관한 실험적 연구)

  • Choi Jin Hyouk;Lee Chang Hoon;Lee Joo Ha;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.49-52
    • /
    • 2004
  • In this studies, Dapped End Beams(DEB) having disturbed regions were designed by using strut tie model, and the main purpose of this paper is that whether T-headed bars and Steel fibers will be present or not. The ability of DEB with T-headed bars have a superior performance rather than others, such as improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. The capacity of DEB with steel fibers also show increase of ductility, shear strength, fatigue strength and crack. Each DEB with both headed bars and steel fibers, headed bars, and steel fibers as a substitute reinforced steel in the disturbed regions and a DEB with only stirrup and tie reinforced steel were comparable. In contrast, the headed bar stirrups, the tie headed bars and the reinforced steel fibers did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by increasing the tension stiffening effect to account for high load effects.

  • PDF

Damage detction and characterization using EMI technique under varying axial load

  • Lim, Yee Yan;Soh, Chee Kiong
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.349-364
    • /
    • 2013
  • Recently, researchers in the field of structural health monitoring (SHM) have been rigorously striving to replace the conventional NDE techniques with the smart material based SHM techniques, employing smart materials such as piezoelectric materials. For instance, the electromechanical impedance (EMI) technique employing piezo-impedance (lead zirconate titanate, PZT) transducer is known for its sensitivity in detecting local damage. For practical applications, various external factors such as fluctuations of temperature and loading, affecting the effectiveness of the EMI technique ought to be understood and compensated. This paper aims at investigating the damage monitoring capability of EMI technique in the presence of axial stress with fixed boundary condition. A compensation technique using effective frequency shift (EFS) by cross-correlation analysis was incorporated to compensate the effect of loading and boundary stiffening. Experimental tests were conducted by inducing damages on lab-sized aluminium beams in the presence of tensile and compressive forces. Two types of damages, crack propagation and bolts loosening were simulated. With EFS for compensation, both cross-correlation coefficient (CC) index and reduction in peak frequency were found to be efficient in characterizing damages in the presence of varying axial loading.

A Study on CFRTP Aircraft Frame Stiffening by OOA Process (OOA 공정을 통한 CFRTP 항공기 Frame 보강재 성형에 관한 연구)

  • Lee, Hwan-Ju;Jeon, Yong-Jun;Choi, Hyun-Seok;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.15-19
    • /
    • 2017
  • Carbon fiber reinforced plastic (CFRP) is applied as structural material. CFRP is excellent in plane strength / stiffness and don't haves rust. Lightweight, rigid and robust at the same time as transportation material. Aluminum alloy and reinforcement material The application is increasing rapidly. In this study, the prototype of a semi - Monocoque structure frame, Longeron, Stringer, Skin of the aircraft, restraining the rigidity Clips of the aircraft was designated as the target product and the experiment was conducted. ln the experiment, (1) For CFRTP 3 points, data on heating, transfer, and cooling were measured using Thermo Couple, and optimum temperature required for flexible state was obtained. Heating was performed at a temperature 15% higher than the provided temperature. (2) By using a pneumatic press during molding, by dividing LH, center and RH according to the cooling time, thickness parameter of the target product due to the load is measured, and thickness control and time-deviations were analyzed and cross sections were observed with a low magnification microscope.

Development of High Damping Alloys for Reduction of Noise and Vibration (소음.진동 제어를 위한 방진합금 개발)

  • Baik, Seung-Han;Kim, Jung-Chul;Han, Dong-Woon;Baik, Jin-Hyun;Kim, Tai-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.565-569
    • /
    • 2004
  • Conventional methods for reducing vibration in engineering designs (i.e. by stiffening or detuning) may be undesirable or inadequate in conditions where size or weight must be minimized or where complex vibration spectra exist. Alloys which combine high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving seismic, shock and vibration isolation. To meet these trends, we have developed a new high damping Fe-17%Mn alloys. Also, the alloy has advantages of good mechanical properties and more economical than any other known damping alloys(1/4 times as cost of non-ferrous damping alloy). Thus, the high damping Fe-17%6Mn alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components with its excellent damping capacity(SDC, 30%) and mechanical property(T.S 700MPa). It is the purpose of this paper to introduce the characterization of the high damping Fe-17%Mn alloy and the results of retrofit several such applications.

  • PDF

Effect of staircase on seismic performance of RC frame building

  • Kumbhar, Onkar G.;Kumar, Ratnesh;Adhikary, Shrabony
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.375-390
    • /
    • 2015
  • Staircase is a vertical transportation element commonly used in every multistoried structure. Inclined flights of staircase are usually casted monolithically with RC frame. The structural configuration of stairs generally introduces discontinuities into the typical regular reinforced concrete frame composed of beams and columns. Inclined position of flight transfers both vertical as well as horizontal forces in the frame. Under lateral loading, staircase in a multistory RC frame building develops truss action creating a local stiffening effect. In case of seismic event the stiff area around staircase attracts larger force. Therefore, special attention is required while modeling and analyzing the building with staircase. However, in general design practice, designers usually ignore the staircase while modeling either due to ignorance or to avoid complexity. A numerical study has been conducted to examine the effect of ignoring staircase in modeling and design of RC frame buildings while they are really present in structure, may be at different locations. Linear dynamic analysis is performed on nine separate building models to evaluate influence of staircase on dynamic characteristics of building, followed by nonlinear static analysis on the same models to access their seismic performance. It is observed that effect of ignoring staircase in modeling is severe and leads to unsafe structure. Effect of location and orientation of staircase is also important in determining seismic performance of RC frame buildings.

Capabilities of 1D CUF-based models to analyse metallic/composite rotors

  • Filippi, Matteo;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • The Carrera Unified Formulation (CUF) is here extended to perform free-vibrational analyses of rotating structures. CUF is a hierarchical formulation, which enables one to obtain refined structural theories by writing the unknown displacement variables using generic functions of the cross-section coordinates (x, z). In this work, Taylor-like expansions are used. The increase of the theory order leads to three-dimensional solutions while, the classical beam models can be obtained as particular cases of the linear theory. The Finite Element technique is used to solve the weak form of the three-dimensional differential equations of motion in terms of "fundamental nuclei", whose forms do not depend on the adopted approximation. Including both gyroscopic and stiffening contributions, structures rotating about either transversal or longitudinal axis can be considered. In particular, the dynamic characteristics of thin-walled cylinders and composite blades are investigated to predict the frequency variations with the rotational speed. The results reveal that the present one-dimensional approach combines a significant accuracy with a very low computational cost compared with 2D and 3D solutions. The advantages are especially evident when deformable and composite structures are analyzed.

Thermal-pressure loading effect on containment structure

  • Kwak, Hyo-Gyoung;Kwon, Yangsu
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.617-633
    • /
    • 2014
  • Because the elevated temperature degrades the mechanical properties of materials used in containments, the global behavior of containments subjected to the internal pressure under high temperature is remarkably different from that subjected to the internal pressure only. This paper concentrates on the nonlinear finite element analyses of the nuclear power plant containment structures, and the importance for the consideration of the elevated temperature effect has been emphasized because severe accident usually accompanies internal high pressure together with a high temperature increase. In addition to the consideration of nonlinear effects in the containment structure such as the tension stiffening and bond-slip effects, the change in material properties under elevated temperature is also taken into account. This paper, accordingly, focuses on the three-dimensional nonlinear analyses with thermal effects. Upon the comparison of experiment data with numerical results for the SNL 1/4 PCCV tested by internal pressure only, three-dimensional analyses for the same structure have been performed by considering internal pressure and temperature loadings designed for two kinds of severe accidents of Saturated Station Condition (SSC) and Station Black-out Scenario (SBO). Through the difference in the structural behavior of containment structures according to the addition of temperature loading, the importance of elevated temperature effect on the ultimate resisting capacity of PCCV has been emphasized.