• Title/Summary/Keyword: stiffeners

Search Result 392, Processing Time 0.026 seconds

Effect of stiffener arrangement on hysteretic behavior of link-to-column connections

  • Zarsav, Saman;Zahrai, Seyed Mehdi;Oskouei, Asghar Vatani
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1051-1064
    • /
    • 2016
  • Link-to-column connections in Eccentrically Braced Frames (EBFs) have critical role in their safety and seismic performance. Accordingly, in this study, contribution of supplemental stiffeners on hysteretic behavior of the link-to-column connection is investigated. Considered stiffeners are placed on both sides and parallel to the link web between the column face and the first stiffener of the link. Hysteretic behaviors of the link beams with supplemental stiffeners are numerically investigated using a pre-validated numerical model in ANSYS. It turned out that supplemental stiffeners can change energy dissipation mechanism of intermediate links from shear-flexure to shear. Both rectangular and trapezoidal supplemental stiffeners are studied. Moreover, optimal placement of the supplemental stiffeners is also investigated. Obtained results indicate a discrepancy of less than 9% in maximum link shear of the numerical and experimental specimens. This indicates that the numerical results are in good agreement with those obtained from the test. Trapezoidal supplemental stiffeners improve rotational capacity of the link. Moreover, use of two supplemental stiffeners at both ends of the link can more effectively improve hysteretic behavior of intermediate links. Supplemental stiffeners would also alleviate the imposed demands on the connections. This latter feature is more pronounced in the case of two supplemental stiffeners at both ends of the link.

Behavior and design of steel I-beams with inclined stiffeners

  • Yang, Yang;Lui, Eric M.
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.183-205
    • /
    • 2012
  • This paper presents an investigation of the effect of inclined stiffeners on the load-carrying capacity of simply-supported hot-rolled steel I-beams under various load conditions. The study is carried out using finite element analysis. A series of beams modeled using 3-D solid finite elements with consideration of initial geometric imperfections, residual stresses, and material nonlinearity are analyzed with and without inclined stiffeners to show how the application of inclined stiffeners can offer a noticeable increase in their lateral-torsional buckling (LTB) capacity. The analysis results have shown that the amount of increase in LTB capacity is primarily dependent on the location of the inclined stiffeners and the lateral unsupported length of the beam. The width, thickness and inclination angle of the stiffeners do not have as much an effect on the beam's lateral-torsional buckling capacity when compared to the stiffeners' location and beam length. Once the optimal location for the stiffeners is determined, parametric studies are performed for different beam lengths and load cases and a design equation is developed for the design of such stiffeners. A design example is given to demonstrate how the proposed equation can be used for the design of inclined stiffeners not only to enhance the beam's bearing capacity but its lateral-torsional buckling strength.

Effect of stiffeners on steel plate shear wall systems

  • Rahmzadeh, Ahmad;Ghassemieh, Mehdi;Park, Yeonho;Abolmaali, Ali
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.545-569
    • /
    • 2016
  • Stiffeners have widely been used in lateral load resisting systems to improve the buckling stability of shear panels in steel frames. However, due to major differences between plate girders and steel plate shear walls (SPSWs), use of plate girder equations often leads to uneconomical and, in some cases, incorrect design of stiffeners. Hence, this paper uses finite element analysis (FEA) to describe the effect of the rigidity and arrangement of stiffeners on the buckling behavior of plates. The procedures consider transverse and/or longitudinal stiffeners in various practical configurations. Subsequently, curves and formulas for the design of stiffeners are presented. In addition, the influence of stiffeners on the inward forces subjected to the boundary elements and the tension field angle is investigated as well. The results indicate that the effective application of stiffeners in SPSW systems not only improves the structural behavior, such as stiffness, overall strength and energy absorption, but also leads to a reduction of the forces that are exerted on the boundary elements.

Experimental study on circular CFST short columns with intermittently welded stiffeners

  • Thomas, Job;Sandeep, T.N.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.659-667
    • /
    • 2018
  • This paper deals with the experimental study on strength the strength and deformation characteristics of short circular Concrete Filled Steel Tube (CFST) columns. Effect of vertical stiffeners on the behavior of the column is studied under axial compressive loading. Intermittently welded vertical stiffeners are used to strengthen the tubes. Stiffeners are attached to the inner surface of tube by welding through pre drilled holes on the tube. The variable of the study is the spacing of the weld between stiffeners and circular tube. A total of 5 specimens with different weld spacing (60 mm, 75 mm, 100 mm, 150 mm and 350 mm) were prepared and tested. Short CFST columns of height 350 mm, outer tube diameter of 165 mm and thickness of 4.5 mm were used in the study. Concrete of cube compressive strength $41N/mm^2$ and steel tubes with yield strength $310N/mm^2$ are adopted. The test results indicate that the strength and deformation of the circular CFST column is found to be significantly influenced by the weld spacing. The ultimate axial load carrying capacity was found to increase by 11% when the spacing of weld is reduced from 350 mm to 60 mm. The vertical stiffeners are found to effective in enhancing the initial stiffness and ductility of CFST columns. The prediction models were developed for strength and deformation of CFST columns. The prediction is found to be in good agreement with the corresponding test data.

An optimization framework for curvilinearly stiffened composite pressure vessels and pipes

  • Singh, Karanpreet;Zhao, Wei;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.15-30
    • /
    • 2021
  • With improvement in innovative manufacturing technologies, it became possible to fabricate any complex shaped structural design for practical applications. This allows for the fabrication of curvilinearly stiffened pressure vessels and pipes. Compared to straight stiffeners, curvilinear stiffeners have shown to have better structural performance and weight savings under certain loading conditions. In this paper, an optimization framework for designing curvilinearly stiffened composite pressure vessels and pipes is presented. NURBS are utilized to define curvilinear stiffeners over the surface of the pipe. An integrated tool using Python, Rhinoceros 3D, MSC.PATRAN and MSC.NASTRAN is implemented for performing the optimization. Rhinoceros 3D is used for creating the geometry, which later is exported to MSC.PATRAN for finite element model generation. Finally, MSC.NASTRAN is used for structural analysis. A Bi-Level Programming (BLP) optimization technique, consisting of Particle Swarm Optimization (PSO) and Gradient-Based Optimization (GBO), is used to find optimal locations of stiffeners, geometric dimensions for stiffener cross-sections and layer thickness for the composite skin. A cylindrical pipe stiffened by orthogonal and curvilinear stiffeners under torsional and bending load cases is studied. It is seen that curvilinear stiffeners can lead to a potential 10.8% weight saving in the structure as compared to the case of using straight stiffeners.

On compressive behavior of large welded hollow spherical joints with both internal and external stiffeners

  • Tingting Shu;Xian Xu;Yaozhi Luo
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.211-220
    • /
    • 2023
  • Welded hollow spherical joints are commonly used joints in space grid structures. An internal stiffener is generally adopted to strengthen the joints when large hollow spheres are used. To further strengthen it, external stiffeners can be used at the same time. In this study, axial compression tests are conducted on four full-scale 550 mm spherical joints. The failure modes and strengths of the tested joints are investigated. It shows that the external stiffeners are able to increase the strength of the joint up to 25%. A numerical model for large spherical joints with stiffeners is established and verified against the experimental results. Parametric studies are executed considering six main design factors using the verified model. It is found that the strength of the spherical joint increases as the thickness, height and number of the external stiffeners increase, and the hollow sphere's diameter has a neglectable effect on the enhancement caused by the external stiffeners. Based on the experimental and numerical results, a practical formula for the compressive bearing capacity of large welded hollow spherical joints with both internal and external stiffeners is proposed. The proposed formula gives a conservative prediction on the compressive capacity of large welded hollow spherical joints with both internal and external stiffeners.

Reinforcement Location of Plate Girders with Two Longitudinal Stiffeners (플레이트 거더의 2단 수평보강재 보강 위치)

  • Son, Byung-Jik;Lee, Kyu-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.93-102
    • /
    • 2009
  • Because steel girder bridge has big slenderness ratio, buckling is very important in design. Local buckling of plate girders having two longitudinal stiffeners in different positions under various load conditions is investigated. Various parametric study according to the change of web height, transverse stiffeners and load conditions are examined. These parametric studies are performed by numerical simulation utilizing finite element method. The objective of this study is to present the rational reinforcement location of two longitudinal stiffeners. The results of analysis are compared to that recommended by korean specifications for road bridges(2003).

Web bend-buckling strength of plate girders with two longitudinal web stiffeners

  • Kim, Byung Jun;Park, Yong Myung;Kim, Kyungsik;Choi, Byung H.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.383-397
    • /
    • 2019
  • More than one longitudinal web stiffener may be economical in the design of plate girders that have considerably high width-to-thickness ratio of webs. In this study, the bend-buckling strength of relatively deep webs with two horizontal lines of flat plate-shaped single-sided stiffeners was numerically investigated. Linear eigenvalue buckling analyses were conducted for specially selected hypothetical models of stiffened web panels, in which top and bottom junctions of a web with flanges were assumed to have simply supported boundary conditions. Major parameters in the analyses were the locations of two longitudinal stiffeners, stress ratios in the web, slenderness ratios and aspect ratios of web panels. Based on the application of assumptions on the combined locations of the two longitudinal web stiffeners, simplified equations were proposed for the bend-buckling coefficients and compared to the case of one longitudinal stiffener. It was found that bend-buckling coefficients can be doubled by adopting two longitudinal stiffeners instead of one longitudinal stiffener. For practical design purposes, additional equations were proposed for the required bending rigidity of the longitudinal stiffeners arranged in two horizontal lines on a web.

Elastic Local Buckling for Orthotropic Channel Section Compression Members with Edge Stiffeners (연단보강된 직교이방성 Channel 단면 압축재의 탄성국부좌굴)

  • 최원창;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.91-94
    • /
    • 2001
  • This paper presents the analytical investigation pertaining to the local buckling behavior of orthotropic channel section compression members stiffened with unsymmetric stiffeners at its free edges. In the analysis, tile edge stiffener is modeled as a beam element or a plate element. The result of both cases is presented in graphical form so that the effects of edge stiffeners on the local buckling strength of edge stiffened channel section member can be found.

  • PDF

Seismic behavior of stiffened concrete-filled double-skin tubular columns

  • Shekastehband, B.;Mohammadbagheri, S.;Taromi, A.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.577-598
    • /
    • 2018
  • The imperfect steel-concrete interface bonding is an important deficiency of the concrete-filled double skin tubular (CFDST) columns that led to separating concrete and steel surfaces under lateral loads and triggering buckling failure of the columns. To improve this issue, it is proposed in this study to use longitudinal and transverse steel stiffeners in CFDST columns. CFDST columns with different patterns of stiffeners embedded in the interior or exterior surfaces of the inner or outer tubes were analyzed under constant axial force and reversed cyclic loading. In the finite element modeling, the confinement effects of both inner and outer tubes on the compressive strength of concrete as well as the effect of discrete crack for concrete fracture were incorporated which give a realistic prediction of the seismic behavior of CFDST columns. Lateral strength, stiffness, ductility and energy absorption are evaluated based on the hysteresis loops. The results indicated that the stiffeners had determinant role on improving pinching behavior resulting from the outer tube's local buckling and opening/closing of the major tensile crack of concrete. The lateral strength, initial stiffness and energy absorption capacity of longitudinally stiffened columns with fixed-free end condition were increased by as much as 17%, 20% and 70%, respectively. The energy dissipation was accentuated up to 107% for fixed-guided end condition. The use of transverse stiffeners at the base of columns increased energy dissipation up to 35%. Axial load ratio, hollow ratio and concrete strength affecting the initial stiffness and lateral strength, had negligible effect of the energy dissipation of the columns. It was also found that the longitudinal stiffeners and transverse stiffeners have, respectively, negative and positive effects on ductility of CFDST columns. The conclusions, drawn from this study, can in turn, lead to the suggestion of some guidelines for the design of CFDST columns.