• Title/Summary/Keyword: stiffened shell

Search Result 105, Processing Time 0.03 seconds

Dynamic Behavior Analysis of Stiffened Cylindrical Shell Filled with Fluid (내부가 유체로 채워진 보강원통쉘의 동적거동 해석)

  • Youm, Ki-Un;Yoon, Kyung-Ho;Lee, Young-Shin;Kim, Jong-Kiun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2875-2886
    • /
    • 1996
  • This work present the experimental resutls for the free vibration of unstiffened, stiffened cylindrical shell filled with air, half water and full water. The natural frequencies and mode shapes of unstiffened, stiffened cylindrical shell are obtained experimentally also. The natural frequencies of stiffened cylindrical shell were generally highter than those of unstiffened cylindrical shell and natural requencies were decreased as cylindrical shell was filled with water. The effect of circumferential stiffener in the first mode was shown that natural frequency more increased 25% at air environment, 29% at half water environment and 37% at full water than those of unstiffened cylindrical shell, respectively. Also, the natural frequencies were decreased according to the added mass effect of fluid in the shell of unstiffened and stiffened cylindrical shell. The six mode shape results of all cases are simular and given. The natural frequencies are determined for a wide range of parameters : e.g. unstiffened shell, and filled with air, half and full water. The effects of varying the parameters on the free vibration frequencies and mode shapes are discussed.

Acoustic Radiation from a Submerged Stiffened Cylindrical Shell Excited by Resiliently Mounted Machinery (탄성지지된 기계류에 의해 가진되는 잠수된 보강 원통형 셸의 음향방사)

  • Bae, Soo Ryong;Lee, Shibok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • This paper investigates the underwater acoustic radiation from a periodically stiffened cylindrical shell excited resiliently mounted machinery. Underwater acoustic radiation is important to a submarine. Generally, submarine structure can be modeled as stiffened cylindrical shell immersed in water. Analytical model is derived for the far-field acoustic radiation from machinery installed inside cylindrical shell. The analytical model includes the effect of fluid loading and interactions between periodic ring stiffeners. Transmitted force from machine to a shell through isolator can be different by the impedance of shell. In this paper the effect of a shell impedance for acoustic radiation is investigated. Impedance of a shell should be considered if thickness of a shell is thin.

Stabilities of cable-stiffened cylindrical single-layer latticed shells

  • Li, Pengcheng;Wu, Minger
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.591-602
    • /
    • 2017
  • A cable-stiffened cylindrical single-layer latticed shell that is reinforced by cable-stiffened system has superior stability behaviour compared with the ordinary cylindrical latticed shell. The layouts of cable-stiffened system are flexible in this structural system, and different layouts contribute different stiffness to the structure. However, the existed few research primarily focused on the simplest type of cable layouts, in which the grids of the latticed shell are diagonally stiffened by prestressed cables in-plane. This current work examines the stability behaviour of the cable-stiffened cylindrical latticed shells with two different types of cable layouts using nonlinear finite element analysis. A parametric study on the effect of cross-sectional of the cables, pretension in cables, joint stiffness, initial imperfections, load distributions and boundary conditions is presented. The findings are useful for the reference of the designer in using this type of structural system.

Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading

  • Patel, S.N.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.483-510
    • /
    • 2006
  • The dynamic instability characteristics of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading are investigated in this paper. The eight-noded isoparametric degenerated shell element and a compatible three-noded curved beam element are used to model the shell panels and the stiffeners respectively. As the usual formulation of degenerated beam element is found to overestimate the torsional rigidity, an attempt has been made to reformulate it in an efficient manner. Moreover the new formulation for the beam element requires five degrees of freedom per node as that of shell element. The method of Hill's infinite determinant is applied to analyze the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters like shell geometry, lamination scheme, stiffening scheme, static and dynamic load factors and boundary conditions, on the dynamic instability behaviour of laminated composite stiffened panels subjected to in-plane harmonic loads along the boundaries. The results of free vibration and buckling of the laminated composite stiffened curved panels are also presented.

An accurate approach for buckling analysis of stringer stiffened laminated composite cylindrical shells under axial compression

  • Davood Poorveis;Amin Khajehdezfuly;Mohammad Reza Sardari;Shapour Moradi
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.543-562
    • /
    • 2024
  • While the external axial compressive load is applied to only the shell edge of stringer-stiffened shell in the most of numerical and analytical previous studies (entitled as conventional approach), a part of external load is applied to the stringers in real conditions. It leads to decrease the accuracy of the axial buckling load calculated by the conventional eigenvalue analysis approach performed in the most of previous studies. In this study, the distribution of stress in the pre-buckling analysis was enhanced by applying the axial external compressive load to both shell and stringers to perform an accurate eigenvalue analysis of the stringer-stiffened composite shell. In this regard, a model was developed in FORTRAN environment to simulate the laminated stringer-stiffened shell under axial compressive load using finite strip method. The axial buckling load of the shell was obtained through eigenvalue analysis. A comparison was made between the results obtained from the model and those available in the previous studies to evaluate the validity of the results obtained from the model. Through a parametric study, the effects of different parameters such as stringer properties and composite layup on the buckling load of the shell under different loading patterns were investigated. The results indicated that in some cases, the axial buckling load obtained for the conventional approach used in the most of previous studies is significantly overestimated or underestimated due to neglecting the stringer in distribution of external load applied to the stringer-stiffened shell. According to the results obtained from the parametric study, some graphs were derived to show the accuracy of the axial buckling load obtained from the conventional approach utilized in the literature.

Resisting Strength of Ring-Stiffened Cylindrical Steel Shell under Uniform External Pressure (균일외압을 받는 링보강 원형단면 강재 쉘의 강도특성)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • Resisting strength of ring-stiffened cylindrical steel shell under uniform external pressure was evaluated by geometrically and materially nonlinear finite element method. The effects of shape and amplitude of geometric initial imperfection, radius to thickness ratio, and spacing of ring stiffeners on the resisting strength of ring-stiffened shell were analyzed. The resisting strength of ring-stiffened cylindrical shells made of SM490 obtained by FEA were compared with design strengths specified in Eurocode 3 and DNV-RP-C202. The shell buckling modes obtained from a linear elastic bifurcation FE analysis were introduced in the nonlinear FE analysis as initial geometric imperfections. The radius to thickness ratios of cylindrical shell in the range of 250 to 500 were considered.

Buckling and Optimum Reinforcement of Axially Stiffened Cylindrical Shells (보강(補剛) 원통 Shell의 좌굴(挫屈) 및 최적보강(最適補强))

  • Jang, Chang-Doo;Nho, Wan
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 1987
  • The energy expressions are formulated for the axially stiffened shell treating the stiffeners as discrete elements. The principle of minimum potential energy is employed to formulate the buckling equations for a simply supported, axially stiffened shell under uniform axial compression. The displacement functions are expended into double trigonometric series. The mode assuming method employed in this paper makes it possible to reduce the matrix size of the eigenvalue problem considerably. Effects are made to investigate the transition from overall buckling to local buckling and to verify the existence of the minimum stiffness ratio of stiffener as in the case of stiffened plate. The results of the calculation show that the critical stiffener size increase linearly as the length of the shell increases. The results also show that the overall buckling load decreases and the local buckling load has a nearly constant value as the length of the shell increases. The results show very good agreements with other computational available.

  • PDF

Geometrically Nonlinear Analysis of Stiffened Shell Structures Using the Assumed Strain Shell Element (가정변형도 쉘요소를 이용한 보강된 쉘구조의 기하학적 비선형해석)

  • 최명수;김문영;장승필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.209-220
    • /
    • 2000
  • For non-linear analysis of stiffened shell structures, the total Lagrangian formulation is presented based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors and taking into account second order rotational terms in the incremental displacement field. Assumed strain concept is adopted in order to overcome shear locking phenomena and to eliminate spurious zero energy mode. The post-buckling behaviors of stiffened shell structures are traced by modeling the stiffener as a shell element and considering general transformation between the main structure and the stiffener at the connection node. Numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with references' results.

  • PDF

An Eccentric Degenerated Shell Element for the Geometrically Nonlinear Analysis of Stiffened Structures (보강된 구조물의 기하학적 비선형 해석을 위한 편심 응축 셸 요소)

  • Lee, Won-Jae;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1721-1730
    • /
    • 2000
  • An eccentric degenerated shell element with geometric non-linearity for the precise and efficient analysis of stiffened shell structures is developed. To deal with the eccentricity, we define the e ccentric shell and the master shell that constitute one combined shell. It is assumed that the sections remain plane after deformation. The internal force vector and the tangent stiffness matrix based on the virtual work principle in the natural coordinate system are derived. To enhance the robustness of the element, assumed strain method for transverse shear and membrane strains is used. Through numerical experiments the effectiveness of the proposed element is demonstrated.

Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads

  • Ahmadi, Habib;Foroutan, Kamran
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.643-655
    • /
    • 2020
  • Active control of nonlinear vibration of stiffened functionally graded (SFG) cylindrical shell is studied in this paper. The system is subjected to axial and transverse periodic loads in the presence of thermal uncertainty. The material composition is considered to be continuously graded in the thickness direction, also these properties depend on temperature. The relations of strain-displacement are derived based on the classical shell theory and the von Kármán equations. For modeling the stiffeners on the cylindrical shell surface, the smeared stiffener technique is used. The Galerkin method is used to discretize the partial differential equations of motion. Some comparisons are made to validate the SFG model. For suppression of the nonlinear vibration, the linear and nonlinear control strategies are applied. For control objectives, the piezoelectric actuator is attached to the external surface of the shell and the thin ring piezoelectric sensor is attached to the middle internal surface of shell. The effect of PID, feedback linearization and sliding mode control on the suppression of vibration for SFG cylindrical shell is presented.