• Title/Summary/Keyword: steric entrapment

Search Result 2, Processing Time 0.014 seconds

Fabrication of Anorthite for Low-Firing Ceramic Substrate by PVA Steric-Entrapment Route (폴리머 고착공정을 통한 저온소성기판용 Anorthite의 제조)

  • Kim, Gwang-Seok;Lee, Chung-Hyo;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.595-599
    • /
    • 2002
  • A homogeneous and stable, amorphous-type, anorthite (CaO $Al_2$$O_3$ $2SiO_2$)powder was synthesized by an organic-inorganic steric entrapment route. Polyvinyl alcohol ( PVA) was used as an organic carrier for the precursor ceramic gel. The PVA content, its degree of polymerization and type of silica sol had a significant influence on the calcination and crystallization behavior of the precursors. For densifiction and crystallization at low temperature, porous and soft, amorphous-type anorthite powder was planetary milled for 20h. The milled powder crystallized to stable anorthite phase and densified to a relative density of 94% below $1000^{\circ}C$. In the development of crystalline phases of the planetary milled powder, omisteinbergite phase was unusually observed at $900^{\circ}C$, and then anorthite was observed at $950^{\circ}C$. The sintered anorthite had a thermal expansion coefficient of $4.6$\times$10^{-6}$ /$^{\circ}C$ and a dielectric constant of 7.5 at 1 MHz. Finally, the anorthite synthesized by the new process is expected to be an useful material for low-firing ceramic substrate.

Fabrication of Nano-sized Titanate Powder via a Polymeric Steric Entrapment Route and Planetary Milling Process

  • Lee, Sang-Jin;Lee, Chung-Hyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.336-340
    • /
    • 2002
  • Pure and nano-sized $TiO_2$ and $CaTiO_3$ powders were fabricated by a polymeric steric entrapment route and planetary milling process. An ethylene glycol was used as a polymeric carrier for the preparation of organic-inorganic precursors. Titanium isopropoxide and calcium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. At the optimum amount of the polymer, the metal cations were dispersed in solution and a homogeneous polymeric network was formed. The dried precursor ceramic gels were turned to porous powders through calcination process. The porous powders were crystallized at low temperatures and the crystalline powders were planetary milled to nano size.