• Title/Summary/Keyword: stereochemical poly(lactide)s

Search Result 3, Processing Time 0.019 seconds

Studies of Degradation Behavior of Stereochemical Poly(lactide) Blend Fibers Prepared by Electrospinning (전기방사에 의한 이성질 폴리락타이드 블렌드의 섬유제조와 분해거동에 관한 연구)

  • Jang, Ei-Sup;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.473-481
    • /
    • 2014
  • Poly(lactide)s(PLA) is an attractive material to solve the problem of waste plastic accumulation in nature because of its biodegradability. The lactide exists in three stereoisomeric configurations: L-lactide, D-lactide, and meso-lactide. PLA stereocomplexes, formed by the mixing of two enantiomers, poly(L-lactide)(PLLA) and poly(D-lactide)(PDLA), have many favorable characteristics because the stereocomplex showed $50^{\circ}C$ higher melting point than each enantiomeric polymer and the resistance toward degradation increased. In this study, we investigated the influence of the composition and the optical purity of each component on the formation of stereocomplexes. Also, the nanofibers of stereochemical PLA and their blends were prepared by electrospinning method. The properties of the obtained fibers were analyzed by differential scanning calorimetry and scanning electron microscopy. The results showed that a degree of stereocomplex was controlled by change of optical purity of each component. The enzymatic degradation of the fibers were strongly dependent on the stereocomplex.

Control of Hydrolytic Degradation of Polylactide Mixtures Using Optical Isomers (광학이성질체를 이용한 폴리락타이드 혼합물의 가수분해성 조절)

  • Lee, Won-Ki
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.309-314
    • /
    • 2012
  • To control degradation rate of biodegradable poly(lactide)s (PLA), the stereochemical PLAs with different ratios of $d$-lactide and $l$-lactide units were synthesized by the ring open polymerization and a degradation behavior was measured by a Langmuir film balance. Degradation rates of mixture monolayers on alkaline subphase were investigated as a function of optical purity of mixture component, 100, 99, 97 and 95%. As increasing their optical purity, melting temperatures of mixtures from stereocomplexation increased. The degradation rate of mixture monolayer with 100% optical purity was much slower than that of each homopolymer one and the others showed 2 step degradation behaviors. In the first step, the degradation which is faster than that of each homopolymer occurs in the uncomplexed region, and secondly, the degradation occurred in the complexed region which showed similar degradation rate to that of 100% optical purity. These results indicate that the alkaline degradation of stereochemical PLAs could be controlled by stereochemistry and stereocomplexation between enantiomer PLAs.

Study on Degradation Rates of Biodegradable Polymers by Stereochemistry (입체화학을 이용한 생분해성 고분자의 분해속도에 관한 연구)

  • Park, Chan-Young;Choi, Yong-Hae;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.797-802
    • /
    • 2009
  • To control degradation rate of biodegradable poly(lactide)s (PLA), the stereochemical PLAs with different ratios of d-lactide and l-lactide units were synthesized by the ring open polymerization and the their degradation kinetics were measured by a Langmuir film balance. The alkaline (pH=11) degradation of poly(l-lactide) (l-PLA) monolayer showed the faster rate at a surface pressure of 4 mN/m in the ranges from to 0 to 7 mN/m. However, the enzymatic degradation of l-PLA with Proteinase K did not occur until 4 mN/m. Above a constant surface pressure of 4 mN/m, the degradation rate was increased with a constant surface pressure. These behaviors might be attributed to the difference in the contacted area with degradation medium: alkaline ions need small contact area with l-PLA while enzymes require much bigger one to be activated due to different medium sizes. The stereochmical PLA monolayers showed that the alkaline degradation was increased with their optical impurities while the enzymatic one was inversed. These results could be explained by the decrease of crystallinity with the optical impurity and the inactivity of enzyme to d-LA unit.