DOI QR코드

DOI QR Code

Control of Hydrolytic Degradation of Polylactide Mixtures Using Optical Isomers

광학이성질체를 이용한 폴리락타이드 혼합물의 가수분해성 조절

  • Lee, Won-Ki (Department of Polymer Engineering Pukyong National University)
  • Received : 2011.09.07
  • Accepted : 2011.12.26
  • Published : 2012.05.25

Abstract

To control degradation rate of biodegradable poly(lactide)s (PLA), the stereochemical PLAs with different ratios of $d$-lactide and $l$-lactide units were synthesized by the ring open polymerization and a degradation behavior was measured by a Langmuir film balance. Degradation rates of mixture monolayers on alkaline subphase were investigated as a function of optical purity of mixture component, 100, 99, 97 and 95%. As increasing their optical purity, melting temperatures of mixtures from stereocomplexation increased. The degradation rate of mixture monolayer with 100% optical purity was much slower than that of each homopolymer one and the others showed 2 step degradation behaviors. In the first step, the degradation which is faster than that of each homopolymer occurs in the uncomplexed region, and secondly, the degradation occurred in the complexed region which showed similar degradation rate to that of 100% optical purity. These results indicate that the alkaline degradation of stereochemical PLAs could be controlled by stereochemistry and stereocomplexation between enantiomer PLAs.

생분해성 폴리락타이드의 분해속도를 조절하기 위하여 $d$-lactide와 $l$-lactide의 함량을 달리하여 다양한 stereochemical PLAs를 개환중합으로 합성하고 Langmuir 단분자막 장치를 이용하여 알칼리 분해속도를 측정하였다. 알칼리 수용액상에서 혼합 단분자막의 분해속도를 각 혼합고분자의 광학적 순도(100, 99, 97, 95%)의 항으로 측정하였다. 스테레오 콤플렉스에 기인하는 혼합물의 용융온도는 혼합물 성분의 광학적 순도가 증가함에 따라 증가하였다. 분해거동은 100% 광학적 순도를 가진 혼합물은 각 단일중합체보다 느린 분해속도를 나타내는 반면 다른 혼합물들은 2단계의 분해거동을 나타내었는데 1단계에서는 콤플렉스를 형성하지 않은 부분에서의 분해로 단일중합체에 비해 빠른 분해속도를 나타내었고 2단계에서는 100% 광학적 순도를 가진 혼합물과 유사하게 느린 분해속도를 나타내었다. 이러한 결과는 폴리락타이드의 stereochemistry와 스테레오 콤플렉스를 이용하여 알칼리 분해속도를 조절할 수 있음을 의미한다.

Keywords

References

  1. A. P. Gupta and V. Kumar, Eur. Polym. J., 43, 4053 (2007). https://doi.org/10.1016/j.eurpolymj.2007.06.045
  2. L. T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci., 33, 802 (2008).
  3. C. W. Lee, Polymer(Korea), 34, 381 (2010).
  4. S. B. Kim and M. J. Choi, KIC News, 10, 10 (2007).
  5. W. K. Lee, Clean Tech., 17, 191 (2011).
  6. S. J. Huang, "An overview of Biodegradable Polymers and Biodegradation of Polymers", in Degradable Polymers, G. Scott, Editor, Kluwer Academic Publishers, Dordrecht, p 17 (2002).
  7. M. Hirata and Y. Kimura, "Structure and properties of Stereocomplex-Type Poly(lactic acid)", in Poly(lactic acid), R. Auras, L Lim, S. Selke, and H. Tsuji, Editors, Weily, New Jersey, p 59 (2010).
  8. W. K. Lee, T. Iwata, and J. A. Gardella, Langmuir, 21, 11180 (2005). https://doi.org/10.1021/la051137b
  9. P. J. Hocking, R. H. Marchessault, M. R. Timmins, R. Z. Lenz, and R. C. Fuller, Macromolecules, 29, 2472 (1996). https://doi.org/10.1021/ma951361f
  10. J. H. Ryou, C. S. Ha, J. W. Kim, and W. K. Lee, Macromol. Biosci., 3, 44 (2003). https://doi.org/10.1002/mabi.200390004
  11. W. K. Lee, J. H. Ryou, and C. S. Ha, Surf. Sci., 542, 235 (2003). https://doi.org/10.1016/S0039-6028(03)00981-6
  12. S. H. Jang, S. B. Park, and W. K. Lee, J. Environ. Sci., 19, 1161 (2010). https://doi.org/10.5322/JES.2010.19.9.1161
  13. C. Y. Park, Y. H. Choi, and W. K. Lee, J. Environ. Sci., 18, 797 (2009). https://doi.org/10.5322/JES.2009.18.7.797
  14. Y. Kikkawa, K. Yamashita, T. Hiraishi, M. Kanesato, and Y. Doi, Biomacromolecules, 6, 2084 (2005). https://doi.org/10.1021/bm0500751
  15. M. S. Reeve, S. P. Mccarthy, M. J. Downey, and R. A. Gross, Macromolecules, 27, 825 (1994). https://doi.org/10.1021/ma00081a030
  16. T. Iwata and Y. Doi, Sen'i Gakkaishi, 57, 172 (2001). https://doi.org/10.2115/fiber.57.172
  17. J. Kim, J. Jegal, B. K. Song, and C. H. Shin, Polymer(Korea), 35, 52 (2011).

Cited by

  1. Preparation of intercross-linked poly(L-lactide) and epoxy resin using N-benzyl pyrazine hexafluoroantimonate vol.20, pp.11, 2012, https://doi.org/10.1007/s10965-013-0264-8