• Title/Summary/Keyword: stereo-camera

Search Result 610, Processing Time 0.024 seconds

Evaluation of Nuclear Medicine Applications of 3D Printing Phantom - Gamma Camera Centrically (3D 프린팅 팬텀의 핵의학분야 적용 평가 - 감마카메라 중심으로)

  • Park, Hoon-Hee;Lee, Juyoung;Kim, Ji-Hyeon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.65-73
    • /
    • 2017
  • Purpose 3D 프린팅 기술은 3D 스캔이나 모델링을 통하여 적측가공 방식으로 제작하는 기공기술로서 금형 없이 직접 생산이 가능하고 빠른 시간 내에 제작이 가능하여 최근 다양한 산업분야에서 본격적으로 적용되고 있다. 3D 프린팅 기술은 의료분야에 있어, 영상의학 및 방사선 치료분야에서 다양하게 활용되고 있지만 핵의학 분야에서는 관련 연구가 미비한 실정이다. 그러므로 본 연구는 기존에 적용되고 있는 핵의학분야 팬텀과 3D 프린팅 기술로 제작된 텀의 특성을 비교하고 적용 가능성을 평가하는데 목적을 두었다. Materials and Methods 방사선 투과도 변화측정 국제기준 팬텀인 알루미늄(Aluminum) 계단 쐐기(step wedge)를 기준($140mm{\times}62mm{\times}35mm$)으로 PMMA(Poly Methyl Meta Acrylate)와 ABS(Acrylonitrile Butadiene Styrene)재질로 각각 동일한 크기의 팬텀을 제작하였다. PMMA 팬텀은 핵의학 분야에서 주로 적용되는 팬텀의 성분과 동일한 소재로 제작하였고, ABS 팬텀 제작은 3D 프린팅 기술의 액체 기반형의 SLA(Stereo Lithography Apparatus)기법을 사용하여 제작하였다. 본 연구는 SPECT/CT장비 BrightView XCT(Philips Health Care, Cleveland, USA)를 이용하였다. 영상 획득은 Rectangular Flood phantom(Biodex, New York, USA) $^{99m}TcO_4$ 3, 6 mCi와 $^{57}Co$ lood phantom(adqual, New Hampshire, USA) $^{57}Co$ 20 mCi를 이용하여 Aluminum, PMMA, ABS 팬텀에 대해 60 min 리스트모드(List mode)로 획득하였다. 획득한 영상의 분석을 위해 관심영역(ROI)을 설정하여 각 팬텀의 단계별로 평가하였다. Results 방사선원의 종류 및 방사선량에 따라 ABS 팬텀의 계수치는 PMMA 팬텀의 계수치와 유사한 값을 나타내며, 두께의 증가에 따라 선형적으로 감소하였다. Aluminum, PMMA, ABS 팬텀의 선감약계수를 비교했을 때, Aluminum 팬텀의 선감약계수는 나머지 두 팬텀보다 수치가 높았고, PMMA, ABS 팬텀에서는 근사치의 선감약계수가 나타났다. Conclusion 3D 프린팅 기술로 제작된 ABS 팬텀을 기준으로 PMMA 팬텀은 두께가 증가함에 따른 계수치의 변화가 유사하게 선형적으로 감소하였고, 선감약계수도 근사치로 나타내었다. ABS 팬텀의 핵의학적 적용 가능성을 확인할 수 있었으며, 추후 연구를 통해 세부적인 교정치(correction value)를 적용한다면 활발한 적용이 가능하리라 사료된다.

  • PDF

Epipolar Resampling for High Resolution Satellite Imagery Based on Parallel Projection (평행투영 기반의 고해상도 위성영상 에피폴라 재배열)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Chang, Hwi-Jeong;Jeong, Ji-Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.81-88
    • /
    • 2007
  • The geometry of satellite image captured by linear CCD sensor is different from that of frame camera image. The fact that the exterior orientation parameters for satellite image with linear CCD sensor varies from scan line by scan line, causes the difference of image geometry between frame and linear CCD sensor. Therefore, we need the epipolar geometry for linear CCD image which differs from that of frame camera image. In this paper, we proposed a method of resampling linear CCD satellite image in epipolar geometry under the assumption that image is not formed in perspective projection but in parallel projection, and the sensor model is a 2D affine sensor model based on parallel projection. For the experiment, IKONOS stereo images, which are high resolution linear CCD images, were used and tested. As results, the spatial accuracy of 2D affine sensor model is investigated and the accuracy of epipolar resampled image with RFM was presented.

  • PDF

Moving Object Extraction and Relative Depth Estimation of Backgrould regions in Video Sequences (동영상에서 물체의 추출과 배경영역의 상대적인 깊이 추정)

  • Park Young-Min;Chang Chu-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.247-256
    • /
    • 2005
  • One of the classic research problems in computer vision is that of stereo, i.e., the reconstruction of three dimensional shape from two or more images. This paper deals with the problem of extracting depth information of non-rigid dynamic 3D scenes from general 2D video sequences taken by monocular camera, such as movies, documentaries, and dramas. Depth of the blocks are extracted from the resultant block motions throughout following two steps: (i) calculation of global parameters concerned with camera translations and focal length using the locations of blocks and their motions, (ii) calculation of each block depth relative to average image depth using the global parameters and the location of the block and its motion, Both singular and non-singular cases are experimented with various video sequences. The resultant relative depths and ego-motion object shapes are virtually identical to human vision.

A 3d Viewing System for Real-time 3d Display General Monitors (범용 모니터에서 실시간 3d 디스플레이가 가능한 입체 뷰잉 시스템 개발)

  • Lee, Sang-Yong;Chin, Seong-Ah
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.13-19
    • /
    • 2012
  • The techniques of 3d image processing have broadly used in the areas including movies, games, performances, exhibitions. In addition, increasing demands for practical uses have gradually extended to the areas of architecture, medicine, nuclear power plant. However, dominant techniques for 3d image processing seem to depend on multi-camera in which two stereo images are merged into one image. Also the pipeline has limitations to provide real-time 3d viewer in ubiquitous computing. It is not able to be applicable onto most general screens as well. In addition, the techniques can be utilized for the real-time 3d game play without a particular monitor or convertor. Hence, the research presented here is to aim at developing an efficient real-time 3d viewer using only mono camera which do not need post processing for editing as well.

Real-Time Foreground Segmentation and Background Substitution for Protecting Privacy on Visual Communication (화상 통신에서의 사생활 보호를 위한 실시간 전경 분리 및 배경 대체)

  • Bae, Gun-Tae;Kwak, Soo-Yeong;Byun, Hye-Ran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.505-513
    • /
    • 2009
  • This paper proposes a real-time foreground segmentation and background substitution method for protecting the privacy on visual communication. Previous works on this topic have some problems with the color and shape of foreground and the capture device such as stereo camera. we provide a solution which can segment the foreground in real-time using fixed mono camera. For improving the performance of a foreground extraction, we propose the Temporal Foreground Probability Model (TFPM) by modeling temporal information of a video. Also we provide an boundary processing method for natural and smooth synthesizing that using alpha matte and simple post-processing method.

The Implementation of Video Library using VR (가상현실을 이용한 동화상 도서관의 구현)

  • 김동현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1456-1461
    • /
    • 2003
  • Recently, the quantity of using information go on increasing geometric-progression. At the same time, the management of information is effected on the most organization's effective operation so that many user call for the powerful equipment which expound. access more information. As information searching technology is concentrated about the object of information based on a letter mainly, an effective searching technology for the object of multimedia such as a still image, a video and a sound must be studied. As a monitor of computer is 2-D, it difficult for one to grasp the whole aspect at a look glance like a library. Accordingly, some condition is necessary. First, it acquired the virtual video, turning a camera around by 30 degrees with a camera of 15mm lens, giving a warping and distortion. Second, it improved the books for user to search easily, adding to the video in existing books information system. The original text suggests some way which can embody the video searching technology under the base of personal computer.

Improving Efficiency of University Campus Facility Management Using Digital Twin

  • Shuhei TAZAWA;Yui SATO;Stephanie BAY;Yoko NAGAYAMA;Jun INOUE
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.957-964
    • /
    • 2024
  • Universities own several campuses and many buildings within the campuses. During the operation & maintenance phase, some of the buildings have architectural components and MEPFs that must be maintained. In the authors' study, university campus Facility Manager uses paper drawings and paper documents for operations and maintenance of MEPFs, and building components, which are managed by human power. In this study, As-Built 3D model of school buildings, was developed by 3D scanning with MatterPort Pro2 camera. A digital twin of the school building was developed from integrating the As-Built 3D model with a COBie Sheet information that defines the building and facility components for FMr. This developed digital twin was used to verify the efficiency of conventional Facility Management (FM) operations. The specific procedures are as follows. (1) Conducted an interview survey on FM of conventional university campuses to organize the current operations. (2) The following building items, which are annual inspection items, were extracted from the conventional FM operations being performed, Speakers, fire alarms, fire doors, guide lights, air conditioning, and fire extinguishing equipment. (3) Since these items listed above are currently documented in different formats, the authors organized them into a database using COBie format. (4) The components of the organized COBie format and the As-Built 3Dmodel were integrated to complete the digital twin. (5) To verify the effectiveness of the digital twin, experiments were conducted on information search in current FM operations and workflows using the digital twin. (6) We also verified the effectiveness of the AS-Built 3D model by comparing between the As-Built 3D model and the BIM model. Finally, we discussed how process innovation through digitalization of FM operations contributes not only to the improvement of daily operations, but also to the productivity improvement of university management.

Unmanned Vehicle System Configuration using All Terrain Vehicle

  • Moon, Hee-Chang;Park, Eun-Young;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1550-1554
    • /
    • 2004
  • This paper deals with an unmanned vehicle system configuration using all terrain vehicle. Many research institutes and university study and develop unmanned vehicle system and control algorithm. Now a day, they try to apply unmanned vehicle to use military device and explore space and deep sea. These unmanned vehicles can help us to work is difficult task and approach. In the previous research of unmanned vehicle in our lab, we used 1/10 scale radio control vehicle and composed the unmanned vehicle system using ultrasonic sensors, CCD camera and kinds of sensor for vehicle's motion control. We designed lane detecting algorithm using vision system and obstacle detecting and avoidance algorithm using ultrasonic sensor and infrared ray sensor. As the system is increased, it is hard to compose the system on the 1/10 scale RC car. So we have to choose a new vehicle is bigger than 1/10 scale RC car but it is smaller than real size vehicle. ATV(all terrain vehicle) and real size vehicle have similar structure and its size is smaller. In this research, we make unmanned vehicle using ATV and explain control theory of each component

  • PDF

Multiple Plane Area Detection Using Self Organizing Map (자기 조직화 지도를 이용한 다중 평면영역 검출)

  • Kim, Jeong-Hyun;Teng, Zhu;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • Plane detection is very important information for mission-critical of robot in 3D environment. A representative method of plane detection is Hough-transformation. Hough-transformation is robust to noise and makes the accurate plane detection possible. But it demands excessive memory and takes too much processing time. Iterative randomized Hough-transformation has been proposed to overcome these shortcomings. This method doesn't vote all data. It votes only one value of the randomly selected data into the Hough parameter space. This value calculated the value of the parameter of the shape that we want to extract. In Hough parameters space, it is possible to detect accurate plane through detection of repetitive maximum value. A common problem in these methods is that it requires too much computational cost and large number of memory space to find the distribution of mixed multiple planes in parameter space. In this paper, we detect multiple planes only via data sampling using Self Organizing Map method. It does not use conventional methods that include transforming to Hough parameter space, voting and repetitive plane extraction. And it improves the reliability of plane detection through division area searching and planarity evaluation. The proposed method is more accurate and faster than the conventional methods which is demonstrated the experiments in various conditions.

3D world space recognition system using stereo camera (스테레오 카메라를 이용한 3차원 공간 인식 시스템)

  • Lee, Dong-Seok;Kim, Su-Dong;Lee, Dong-Wook;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.215-218
    • /
    • 2008
  • 본 논문에서는 스테레오 카메라로부터 획득된 좌, 우 영상의 변이를 추정하여 3차원 공간 좌표(x, y, z)를 얻어내고, 거리측정과 가상공간 제어를 통해 사용자에게 현실감을 제공하는 실시간 3차원 공간 인식 시스템을 제안한다. 스테레오 카메라로 부터 획득된 좌, 우 영상은 시점의 차이 때문에 동일 물체에 대한 좌, 우 영상의 좌표 값의 차이를 발생시키는 데 이를 변이(disparity)라 정의한다. 관심 영역의 변이를 추정할 때 일반적으로 관심 영역의 모든 화소(pixel)의 변이를 추정하지만, 제안한 알고리즘에서는 관심 영역의 2차원 중심 좌표(x, y)의 변이만을 추정하여 계산량을 줄이고 실시간 처리가 가능하도록 하였다. 카메라 파라미터를 이용하여 획득된 변이로부터 깊이 정보(depth)를 얻어내고 3차원 공간 좌표를 획득한다. 손을 관심 영역으로 설정한 시스템에서 3차원 공간 좌표는 실시간으로 사용자의 손의 움직임에 의해 획득되고, 가상공간(virtual space)에 적용되어 사용자가 가상공간을 조작할 수 있는 듯한 느낌을 준다. 실험을 통해 제안한 알고리즘이 1.5m 거리 내에서의 깊이 측정시 평균 0.68cm의 오차를 가짐을 확인 할 수 있었다.

  • PDF