• Title/Summary/Keyword: stereo calibration

Search Result 138, Processing Time 0.028 seconds

The Study for the Efficient scanning of Stereo X-ray System (스테레오 X-ray 시스템 검색기능 개선 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Park, Jong-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.884-886
    • /
    • 2012
  • As the existing radiation Scanning systems use 2-dimensional radiation scanned images, the low accuracy has been pointed out as a problem of it. Two-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. In this paper, we enhanced the scanning efficiency of the stereo X-ray inspection system using the precision control module.

  • PDF

A Technique to Efficiently Place Sensors for Three-Dimensional Robotic Manipulation : For the Case of Stereo Cameras (로봇의 3차원 작업을 위한 효율적 센서위치의 결정기법 : 스테레오 카메라를 중심으로)

  • Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.80-88
    • /
    • 1999
  • This paper deals with the position determination problem of stereo camera systems used as a sensor for 3D robotic manipulation. Stereo cameras having parallel rays of sight and been set up on the same baseline are assumed. The distance between the sensor and the space measured is determined so as to get insensitive parameters to the uncertainty of control points used for calibration and to satisfy the error condition set by considering the repeatability of the robot. The baseline width is determined by minimizing the mutual effect of 3D positional error and stereo image coordinate error. Unlike existing techniques, the technique proposed here is developed without complicated constraints and modelling process of the object to be observed. Thus, the technique of this paper is more general and its effectiveness is proved by simulation.

  • PDF

Development of 3-D Volume PIV (3차원 Volume PIV의 개발)

  • Choi, Jang-Woon;Nam, Koo-Man;Lee, Young-Ho;Kim, Mi-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.726-735
    • /
    • 2003
  • A Process of 3-D Particle image velocimetry, called here, as '3-D volume PIV' was developed for the full-field measurement of 3-D complex flows. The present method includes the coordinate transformation from image to camera, calibration of camera by a calibrator based on the collinear equation, stereo matching of particles by the approximation of the epipolar lines, accurate calculation of 3-D particle positions, identification of velocity vectors by 3-D cross-correlation equation, removal of error vectors by a statistical method followed by a continuity equation criterior, and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis 3-D flow field, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An Experimental system was also used for the application of the proposed method. Three analog CCD camera and a Halogen lamp illumination were adopted to capture the wake flow behind a bluff obstacle. Among 200 effective particle s in two consecutive frames, 170 vectors were obtained averagely in the present study.

A Study on the Sensor Calibration of Motion Capture System using PSD Sensor to Improve the Accuracy (PSD 센서를 이용한 모션캡쳐센서의 정밀도 향상을 위한 보정에 관한 연구)

  • Choi, Hun-Il;Jo, Yong-Jun;Ryu, Young-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.583-585
    • /
    • 2004
  • In this paper we will deal with a calibration method for low cost motion capture system using psd(position sensitive detection) optical sensor. To measure the incident direction of the light from LED emitted marker, the PSD is used the output current ratio on the electrode of PSD is proportional with the incident position of the light focused by lens. In order to defect the direction of the light, the current output is converted into digital voltage value by opamp circuits peak detector and AD converter with the digital value the incident position is measured. Unfortunately, due to the non-linearly problem of the circuit poor position accuracy is shown. To overcome such problems, we compensated the non-linearly by using least-square fitting method. After compensated the non-linearly in the circuit, the system showed more enhanced position accuracy.

  • PDF

Calibration and INvestigation into Measurement Performance of a Visual Sensing System (시각측정시스템의 캘리브레이션 및 측정성능 검토)

  • Kim, Jin-Young;Cho, Hyung-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.113-121
    • /
    • 1999
  • It is necessary to calibrate measurement systems to enhance its measurement accuracy. The visual sensing system that is presented in our previous work has to be calibrated, too. It is a multiple mirror system for three-dimensional measurement, which is composed of a camera and a series of mirrors. It is important to calibrate the positions and orientations of the mirrors relative to the camera because they have direct influence on the relationship between the image plane and the task space. This paper presents the calibration method for the visual sensing system. To confirm the measurement performance of the implemented system. its measurement accuracy in measuring the locations in three-dimensional space is investigated. A series of experiments for measuring the locations of the circle-shaped marks are performed. Experimental results show that the sensing system can be effectively used for three-dimensional measurement.

  • PDF

The Stereo Camera Measurement of Point Cloud on 3D Object and the Calculation of Volume Based on Irregular Triangular Mesh (스테레오 카메라와 측정에 의한 3D 대상체 포인트 클라우드의 불규칙 삼각 매싱 기반 체적 계산)

  • Lee, Young-Dae;Cho, Sung-Youn;Kim, Kyung;Lee, Dong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.153-159
    • /
    • 2012
  • For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. In this paper, we proposed the algorithm computes the waste volume periodically for the way of waste repository standard. After stereo camera calibration, we obtained the point cloud on the surface of the object and took this as the input of the calculation algorithm of the object volume. We proposed the volume calculation algorithms based on the non-uniform triangular meshing methods and verified the validity of the algorithm through simulation and real experiments. The proposed algorithm can be used not only as the volume calculation of the waste repository but also as the general volume calculation of a three dimensional object.

Calibrating Stereoscopic 3D Position Measurement Systems Using Artificial Neural Nets (3차원 위치측정을 위한 스테레오 카메라 시스템의 인공 신경망을 이용한 보정)

  • Do, Yong-Tae;Lee, Dae-Sik;Yoo, Seog-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.418-425
    • /
    • 1998
  • Stereo cameras are the most widely used sensing systems for automated machines including robots to interact with their three-dimensional(3D) working environments. The position of a target point in the 3D world coordinates can be measured by the use of stereo cameras and the camera calibration is an important preliminary step for the task. Existing camera calibration techniques can be classified into two large categories - linear and nonlinear techniques. While linear techniques are simple but somewhat inaccurate, the nonlinear ones require a modeling process to compensate for the lens distortion and a rather complicated procedure to solve the nonlinear equations. In this paper, a method employing a neural network for the calibration problem is described for tackling the problems arisen when existing techniques are applied and the results are reported. Particularly, it is shown experimentally that by utilizing the function approximation capability of multi-layer neural networks trained by the back-propagation(BP) algorithm to learn the error pattern of a linear technique, the measurement accuracy can be simply and efficiently increased.

  • PDF

A Real-Time Hardware Architecture for Image Rectification Using Floating Point Processing (부동 소수점 연산을 이용한 실시간 영상 편위교정 FPGA 하드웨어 구조 설계)

  • Han, Dongil;Choi, Jeahoon;Shin, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.102-113
    • /
    • 2014
  • This paper suggests a novel hardware architecture of a real-time rectification which is to remove vertical parallax of an image occurred in the pre-processing stage of stereo matching. As an off-line step, Matlab Toolbox which was designed by J.Y Bouguet, was used to calculate calibration parameter of the image. Then, based on the Heikkila and Silven's algorithm, rectification hardware was designed. At this point, to enhance the precision of the rectified image, floating-point unit was generated by using Xilinx Core Generator. And, we confirmed that proposed hardware design had higher precision compared to other designs while having the ability to do rectification in real-time.

Camera calibration parameters estimation using perspective variation ratio of grid type line widths (격자형 선폭들의 투영변화비를 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Choi, Seong-Gu;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.30-32
    • /
    • 2004
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as lens distortion, focal length, scale factor, pose, orientations, and distance. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1, 2, 3, 4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. The average scale factor tends to fluctuate with small variation and makes distance error decrease. Compared with classical methods that use stereo camera or two or three orthogonal planes, the proposed method is easy to use and flexible. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF