• Title/Summary/Keyword: step-drawdown test

Search Result 15, Processing Time 0.025 seconds

Comparisons of Different Step-drawdown Test Analysis Methods; Implication for Improrvced Analysis for Step-drawdown Test Data (단계양수시험 해석 방법에 따른 우물 및 수리 상수 변동 분석)

  • An, Hyowon;Ha, Kyoochul;Lee, Eunhee;Do, Byung Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.35-47
    • /
    • 2020
  • Step-drawdown test is one of the widely-used aquifer test methods to evaluate aquifer and well losses. Various approaches have been suggested to estimate well losses using the step-drawdown test data but the uncertainties associated with data interpretation and analysis still exist. In this study, we applied three different step-drawdown test analysis methods -Jacob (1947), Labadie and Helweg (1975), Gupta (1989)- to the step-drawdown test data in Seobu-myeon, Hongseong-gun, South Korea and estimated aquifer and well losses. Comparisons of different step-drawdown test analysis methods revealed that the estimated well losses showed different values depending on the applied methods and these variations are likely to be related to the limitation of the assumptions for each analysis method. Based on the detailed analysis of time-drawdown data, we performed step-drawdown test analysis after removing outlier data during the initial stage of step drawdown test. The results showed that the application of the revised time-drawdown data could substantially decrease the error of the analysis as well as the variations in the estimated well losses from different analysis methods.

Effects of Selected Time on Analysis Results in Step-Drawdown Tests (단계양수시험 해석시 시간선택이 해석결과에 미치는 영향)

  • Lee Jin-Yong;Song Sung-Ho;Lee Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • Step-drawdown test has been generally conducted to evaluate productivity or efficiency of both aquifer and well. In general step-drawdown test, pumping with a low constant discharge rate is conducted in the first stage until the drawdown within the well stabilizes. And then the groundwater is pumped with a higher rate in the next step until the drawdown stabilizes once more. This process is repeated at least three times (steps), with the equal duration. In this paper we tried to review some critical problems related to the step-drawdown test, which were revealed in the process of field practices and analyses. The problems, referred in this paper are mainly associated with the incorrect conceptual approach for analysis and incomplete data collection in the field test.

A General Solution of Determining Storage Coefficient From Multi-Step Pumping Test Recovery Data

  • Jin-Yong Lee;Kang-Kun Lee
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.20-23
    • /
    • 2000
  • A general solution for determining the storage coefficient from multi-step pumping test recovery data is suggested. This solution is essentially based on the method of Banton and Bangoy (1996), which used single-step pumping test recovery data. The suggested solution can be applied to any-step pumping test recovery data. We have demonstrated the applicability of the general solution to single-, double-, and triple-step pumping and/or step-drawdown test data partially described in Lee and Lee (1999). The estimates of storage coefficient as well as transmissivity are well consistent with the values from other methods for pumping phase data.

  • PDF

Geochemical Characteristics of Groundwater during the Constant and Step-drawdown Pumping Tests at the River Bank Filtration Site (장기 및 단계 양수시험 시 강변여과 지하수의 수질변화 특성)

  • Kim, Gyoobum;Shin, Seonho;Kim, Byungwoo;Park, Joonhyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.11-21
    • /
    • 2013
  • In-situ test to find the change of $Fe^{2+}$ and $Mn^{2+}$ concentrations and ion contents in groundwater was conducted during two pumping tests at the riverbank filtration site, where is the riverine area of the Nakdong River in Changnyeong-Gun. Groundwater was sampled at one pumping well and 10 monitoring wells during a 5 steps drawdown pumping test with the rates from $500m^3/day$ to $900m^3/day$ and a constant pumping test with $800m^3/day$. The change in ion concentration of groundwater was more remarkable during a step drawdown pumping test than a constant pumping test. Especially, the decrease in $Fe^{2+}$ and $Mn^{2+}$ concentrations was distinct in a step drawdown pumping test and it happens predominantly along the direction that the radius of pumping influence was small due to a good aquifer connectivity to a pumping position. The precipitation and the oxidation of iron and manganese were caused by an air inflow and a disturbance in groundwater flow due to an abrupt change in pumping rate. The pumping rate and spatial distribution of an aquifer around a pumping well need to be considered as an important factor for the development of in-situ iron and manganese treatment technology.

Quantitative Evaluation for Improvement Effects of Performance After Mechanical Rehabilitation Treatments on Agricultural Groundwater Well (농업용 관정의 기계적 처리 이후 성능 개선 효과의 정량적 평가 사례)

  • Song, Sung-Ho;Lee, Byung-Sun;An, Jung-Gi
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.42-49
    • /
    • 2016
  • Step-drawdown pumping tests for identifying the improvement of groundwater well performance after rehabilitation treatments were conducted in three longstanding wells. Three selective mechanical treatment methods including power bubble, high-voltage electric pulse, and air surging were applied to these wells and the applicability of these methods to secure additional groundwater resources were evaluated quantitatively. Commonly, drawdown at final stage of stepdrawdown pumping tests after rehabilitation decreased by as much as 0.61~0.70 meters compared to those before rehabilitation. In addition, final specific drawdown values of three wells increased from 9% to 14% after rehabilitation. Formation loss coefficient and well loss coefficient decreased to 6.1% and 60.6%, respectively, indicating some clogging materials by precipitation/corrosion/microbe within pores of aquifer materials, gravel packs, and screens were effectively removed by applied methods. Decrease of formation loss coefficient was higher in the well applied by the power bubble method meanwhile high-voltage electric pulse method demonstrated the higher decrease of well loss coefficient. Additionally secured groundwater amounts after rehabilitation ranged from 23.3 to 32.1 m3/day, which account for 8~16% of initially developed pumping rates of the wells. From the results of this study, the effective selection of rehabilitation treatments considering aquifer characteristics are expected to contribute to secure groundwater resources for irrigation as well as to plan systematic management program for groundwater resources in rural area.

Well Loss in Fractured Rock Formation with Radial Flow during Pumping Test (양수시험시 방사상흐름을 보이는 균열암반 대수층에서의 우물손실)

  • 이철우;이대하;정지곤;김구영;김용제
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • Pumping tests were carried out from seven wells in fractured rocks. The time-drawdown data were obtained from pumping wells and corrected for the elapsed time of step drawdown test using Cooper-Jacob's method. A statistical method. the least square of error, was used to yield the coefficient of aquifer losses, the coefficient of well losses, and the power which indicates the severity of the turbulence. The values of the power range from 1.65 to 6.48. The well losses result mainly from turbulent flow caused by radial flow nearby pumping wells. The turbulent flow depends on Reynolds number. Since the hydraulic characteristics of fractured rocks control the fluid velocity, the value of the power is an important factor to understand the aquifer system of fractured rocks.

Development of Water-Source Heat Pump System Using Riverbank Filtration Water on the Waterfront (친수지역 강변여과수 열원을 활용한 냉난방시스템 개발)

  • Cho, Yong;Kim, Dea Geun;Moon, Jong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.201.2-201.2
    • /
    • 2011
  • A water-source heat pump system has been developed for cooling and heating of a green house on the waterfront in Jinju. In order to supply a heat source/sink of water in alluvium aquifer to the heat pump system, the riverbank filtration facility (two pumping wells and one recharge well) for water intake and injection has been constructed. To pump and recharge water sufficiently, the geometric design such as depth and diameter for the wells have been completed, and details of the well such as slot size and length of the screen and filter pack size have been designed based on the practical and theoretical design method including D30 technique. For the investigation of the hydrogeological characteristics, step-drawdown test, long-term pumping test, and recovery test have been carried out for two developed pumping wells. Step-drawdown test has been performed on 4 step flowrates of 150, 300, 450, $600m^3$/day for 1 hour, and long-term pumping test on flowrate of $500m^3$/day for 24 hours, and recovery test for 6 hours. Since the underground water filtrated by riverbank is flowing smoothly into the well, the water level goes down slightly for the long-term test. Consequently, the stable pumping flowrate for two pumping well has been predicted at least over $1,647m^3$/day which is larger than the flowrate of $1,000m^3$/day for a 60 RT heat pump system.

  • PDF

Effects of Well Parameters Analysis Techniques on Evaluation of Well Efficiency in Step-Drawdown Test (단계양수시험 해석시 우물상수 산정 방법이 우물효율에 미치는 영향)

  • Chung, Sang-Yong;Kim, Byung-Woo;Kim, Gyoo-Bum;Kweon, Hae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.71-79
    • /
    • 2009
  • Step-drawdown tests were conducted at four pumping Wells, two in porous media and two in fractured rocks, respectively. In general, P = 2.0 suggested by Jacob (1947) is applied to porous media and fractured rocks in terms of drawdowns of step-drawdown test. In an attempt to review problems of linear model (Jacob's graphic method) in interpreting the step-draw down test, the outcomes of well parameters (aquifer loss coefficient (B), well loss coefficient (C) and well loss exponent (P)) calculated from linear and nonlinear model (Labadie and Helweg's least-squares method) were compared and analyzed. The values of C and P calculated from linear and nonlinear models differed according to permeability of aquifer and the conditions of pumping well. The value C obtained from nonlinear models in porous media and fractured rocks is about $10^0{\sim}10^{-2}$ and $10^{-3}{\sim}10^{-6}$ times lower than in their linear models, respectively. The value P of porous media obtained from nonlinear model ranged from 2.123 to 2.775, while it ranged from 3.459 to 5.635 for fractured rocks. In case of nonlinear model, well loss highly depends on the value P. At this time, well efficiencies calculated from linear and nonlinear models were $1.56{\sim}14.89%$ for porous media and $8.73{\sim}24.71%$ for fractured rocks, showing a significant error according to chosen models. In nonlinear model, it was found that the regression analysis using the least squares method was very useful to interpret step-drawdown test in all aquifer.

Evaluation of Low or High Permeability of Fractured Rock using Well Head Losses from Step-Drawdown Tests (단계양수시험으로부터 우물수두손실 항을 이용한 단열의 고.저 투수성 평가)

  • Kim, Byung-Woo;Kim, Hyoung-Soo;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The equation of the step-drawdown test "$s_w=BQ+CQ^p$" written by Rorabaugh (1953) is suitable for drawdown increased non-linearly in the fractured rocks. It was found that value of root mean square error (RMSE) between observed and calculated drawdowns was very low. The calculated $C$ (well head loss coefficient) and $P$ (well head loss exponent) value of well head losses ($CQ^p$) ranged $3.689{\times}10^{-19}{\sim}5.825{\times}10^{-7}$ and 3.459~8.290, respectively. It appeared that the deeper depth in pumping well the larger drawdowns due to pumping rate increase. The well head loss in the fractured rocks, unlike that in porous media, is affected by properties of fractures (fractures of aperture, spacing, and connection) around pumping well. The $C$ and $P$ value in the well head loss is very important to interpret turbulence interval and properties of high or low permeability of fractured rock. As a result, regression analysis of $C$ and $P$ value in the well head losses identified the relationship of turbulence interval and hydraulic properties. The relationship between $C$ and $P$ value turned out very useful to interpret hydraulic properties of the fractured rocks.

Estimation of Hydraulic Parameters from Slug, Single Well Pumping and Step-drawdown Tests (순간수위 변화시험, 단공양수시험 및 단계양수시험을 통한 수리상수 추정연구)

  • Jo, Yun-Ju;Lee, Jin-Yong;Jun, Seong-Chun;Cheon, Jeong-Yong;Kwon, Hyung-Pyo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.203-212
    • /
    • 2010
  • The aim in this study is used to develop the remediation technologies for contaminated ground water. Slug, single well pumping and step-drawdown tests have been used to obtain hydraulic parameter estimates in the field. Slug tests yield hydraulic conductivity values using the Bouwer and Rice and C-B-P analysis methods. The mean and median hydraulic conductivity values of Bouwer and Rice method are $4.48{\times}10^{-3}$ and $1.16{\times}10^{-3}cm/sec$, respectively. On the other hand, C-B-P method gave mean and median hydraulic conductivity values of $2.37{\times}10^{-3}$ and $7.09{\times}10^{-4}cm/sec$, respectively. These analyses show a trend for the Bouwer and Rice method to yield lower hydraulic conductivity values in low permeability zones of granite in the study area. Sing well pumping test data were calculated through type curve in GW7, GW12 and MW9 wells. It could be interpreted that the differences of hydraulic conductivity and transmissivity values between GW7 and GW12, MW9 is related with fault clays and fractures in the bedrock among the wells. Step-drawdown tests were carried out in the KDPW1 and KDPW2 wells. The hydraulic parameter of KDPW1 and KDPW2 showed very litter difference between the values. The study of hydraulic parameter estimates can be used to purify in contaminated groundwater.