Effects of Well Parameters Analysis Techniques on Evaluation of Well Efficiency in Step-Drawdown Test

단계양수시험 해석시 우물상수 산정 방법이 우물효율에 미치는 영향

  • Chung, Sang-Yong (Department of Environmental Geosciences, Pukyong National University) ;
  • Kim, Byung-Woo (K-water Institute, Korea Water Resources Corporation) ;
  • Kim, Gyoo-Bum (K-water Institute, Korea Water Resources Corporation) ;
  • Kweon, Hae-Woo (Domestic Exploration Support Team, Korea Resources Corporation)
  • 정상용 (부경대학교 환경지질과학과) ;
  • 김병우 (한국수자원공사 K-water연구원) ;
  • 김규범 (한국수자원공사 K-water연구원) ;
  • 권해우 (한국광물자원공사 탐사지원팀)
  • Published : 2009.03.31

Abstract

Step-drawdown tests were conducted at four pumping Wells, two in porous media and two in fractured rocks, respectively. In general, P = 2.0 suggested by Jacob (1947) is applied to porous media and fractured rocks in terms of drawdowns of step-drawdown test. In an attempt to review problems of linear model (Jacob's graphic method) in interpreting the step-draw down test, the outcomes of well parameters (aquifer loss coefficient (B), well loss coefficient (C) and well loss exponent (P)) calculated from linear and nonlinear model (Labadie and Helweg's least-squares method) were compared and analyzed. The values of C and P calculated from linear and nonlinear models differed according to permeability of aquifer and the conditions of pumping well. The value C obtained from nonlinear models in porous media and fractured rocks is about $10^0{\sim}10^{-2}$ and $10^{-3}{\sim}10^{-6}$ times lower than in their linear models, respectively. The value P of porous media obtained from nonlinear model ranged from 2.123 to 2.775, while it ranged from 3.459 to 5.635 for fractured rocks. In case of nonlinear model, well loss highly depends on the value P. At this time, well efficiencies calculated from linear and nonlinear models were $1.56{\sim}14.89%$ for porous media and $8.73{\sim}24.71%$ for fractured rocks, showing a significant error according to chosen models. In nonlinear model, it was found that the regression analysis using the least squares method was very useful to interpret step-drawdown test in all aquifer.

다공질매질에 굴착된 2개의 관정과 단열암반층에 굴착된 2개의 관정으로 부터 단계양수시험이 실시되었다. Jacob(1947)이 제시한 P = 2.0 값은 단계양수시험의 수위강하를 해석하기 위하여 다공질매질과 단열암반층에 모두 적용되고 있다. 단계양수시험 해석에 대한 선형 모델(Jacob's graphic method)의 문제점들을 파악하기 위하여, 선형과 비선형 모델(Labadie and Helweg's least-sauares method)에서 산정된 우물상수(대수층손실상수(B), 우물손실상수(C) 및 우물손실지수(P))를 비교 분석하였다. 선형과 비선형 모델에서 산정된 C와 P값의 차이는 대수층의 투수성과 관정의 조건에 따라 다양하게 나타났다. 즉, 다공질매질에서 비선형 모델로 산정된 C값은 선형 모델로 산정된 C값에 비해 약 $10^0{\sim}10^{-2}$, 단열암반층에서는 약 $10^{-3}{\sim}10^{-6}$배 낮게 나타났다. 비선형 모델을 통해 산정된 다공질매질의 P값은 $2.124{\sim}2.775$, 단열암반층은 $3.459{\sim}5.635$의 범위로 산정되었으며, 이때 비선형 모델에서 우물손실은 P값에 따라 크게 좌우되었다. 선형과 비선형 모델을 통해 산정된 우물효율성의 차이는 다공질매질에서 $1.56{\sim}14.89%$, 단열암반층에서 $8.73{\sim}24.71%$를 보여 모델의 선택에 따라 상당한 오차를 가지는 것으로 나타났다. 또한 비선형의 최소제곱법을 적용한 회귀분석 방법이 모든 대수층의 단계양수시험 해석에 있어 매우 유용함을 확인하였다.

Keywords

References

  1. 건설교통부, 한국수자원공사, 대한광업진흥공사, 2004, 포천지역 지하수 기초조사 보고서, 정부간행물 등록번호(11-1500000-001408-01), 10-9
  2. 건설교통부, 한국수자원공사, 대한광업진흥공사, 2006, 청주청원 지역 지하수 기초조사 보고서, 겅부간행물 등록번호(1-1500000-001810-01), 7-7
  3. 이진용, 송성호, 이강근, 2005, 단계양수시험 해석시 시간선택이 해석결과에 미치는 영향, 한국지하수토양환경학회, 10(2), 59-65
  4. 이철우, 이대하, 정지곤, 김구영, 김용제, 2002, 양수시험시 방사상흐름을 보이는 균열암반 대수층에서의 우물손실, 한국지하수토양환경학회, 7(4), 17-23
  5. (주)대우건설, 2004, 경부고속철도 제14-2공구 사갱설치에 따른 국가기록원 부산지원 지하서고 안전영향 및 사갱도 설치 적정성 검토 보고서, 752p
  6. Batu, V., 1998, Aquifer Hydraulics -A comprehensive guide to hydrogeologic data analysis, John Weley & sons, New York, 113-627
  7. Bierschenk, W. H., 1963, Determining well efficiency by multiple step-drawdown tests, International Association of Scientific Hydrology, 64, 494-507
  8. Birsoy, Y. K. and Summers, W. K., 1980, Determination of aquifer parameters from step tests and intermittent pumping data, Ground Water, 18(2), 137-146 https://doi.org/10.1111/j.1745-6584.1980.tb03382.x
  9. Bruin, J. and Hudson, H. E. Jr., 1955, Selected methods for pumping test analysis, Illinois Water Survey, Report of Investigations, 25, 29-37
  10. Gupta, A. D., 1989, On analysis of step-drawdown data, Ground Water, 27(6), 874-881 https://doi.org/10.1111/j.1745-6584.1989.tb01051.x
  11. Helweg, O. J., 1994, A General Solution to the Stepdrawdown Test, Ground Water, 3(3), 363-366
  12. Jacob, C. E., 1947, Drawdown test to determine effective radius of artesian well, Transactions, ASCE, 112, 1047-1070
  13. Kasenow, M.C., 1996, Production Well Analysis: New Methods and a computer program in well hydraulics. Water Resources Publications, LLC, Highlands Ranch, Colorado, 355p
  14. Kawecki, M. W., 1995, Meaningful interpretatin of stepdrawdown tests, Ground Water, 33(1), 23-32 https://doi.org/10.1111/j.1745-6584.1995.tb00259.x
  15. Kruseman, G. P. and de Ridder, N. A., 1991, Analysis and evaluation of pumping test data, 2nd edition, International institute for Land Reclamation and Improvement, Wageningen, the Netherlands, 378p
  16. Labadie, J. W. and Helweg, O. J., 1975, Step-drawdown test analysis by computer, Ground Water, 13(5), 438-444 https://doi.org/10.1111/j.1745-6584.1975.tb03611.x
  17. Miller, C. T. and Weber, W. J., 1983, Rapid solution of the nonlinear step-drawdown equation, Ground Water. 21(5), 584-588 https://doi.org/10.1111/j.1745-6584.1983.tb00765.x
  18. Rorabaugh, M. I., 1953, Graphical and theoretical analysis of step-drawdown tests of artesian wells, Proceeding of the American Society of Civil Engineers, 79, 362p
  19. Sheahan, N. T., 1971, Type-curve solution of step-drawdown test, Ground Water, 9(1), 25-29 https://doi.org/10.1111/j.1745-6584.1971.tb03528.x
  20. Sheahan, N. T., 1975, Discussion of step-drawdown test analysis by computer, Ground Water, 13(5), 445-449 https://doi.org/10.1111/j.1745-6584.1975.tb03612.x
  21. Shekhar, S., 2006, An approach to interpretation of step drawdown tests, Hydrogeology Journal, 14, 1018-1027 https://doi.org/10.1007/s10040-005-0016-x
  22. Singh, S. K., 1998, Optimization of confined aquifer parameters from variable rate pump test, Journal of Hydraulic Engineering, 4(1), 61-70 https://doi.org/10.1080/09715010.1998.10514621
  23. Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Transactions, American Geophysical Union, 16, 519-524 https://doi.org/10.1029/TR016i002p00519
  24. Thiem, G., 1906, Hydrologische methoden; Leipzing, Gebhardt, 56p
  25. Todd, D. K., 1980, Groundwater Hydrology, John Wiley & Sons, New York, 111-163