• Title/Summary/Keyword: stem and root

Search Result 1,138, Processing Time 0.026 seconds

Effect of Plant Growth Regulators on Calls Initiation and Organogenesis from Tissue Culture of Arabidopsis thaliana Stem (애기장대 줄기 조직배양에 있어서 식물생장조절제가 캘러스 형성과 기관분화에 미치는 영향)

  • Park, Jung-An;Park, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.257-261
    • /
    • 2003
  • This experiment was carried out to investigate the effects of plant growth regulators on the organogenesis from the tissue culture of Arabidopsis thaliana stem, and the origin of the callus development. When the stem segments were cultured on medium with 2mg/L IAA or NAA, adventitious roots and trichomes were differentiated after 11 days of culture. Callus vigorously formed on medium with 2/L2,4 after 7 days of culture, but adventitious roots and trichomes were not differentiated from callus after 10 days of culture. This results suggesting that picloram is very effective auxin for the callus formation and organogenesis. Callus weakly formed on 0.05mg/L kinetin, and formed on combination of auxins(2mg/L) with 0.05mg/L kinetin. But the effect of combination of auxins and kinetin the callus formation was less than 2,4-D or picloram alone. A histological examination of callus formed on picloram showed that phloram showed that phloem parenchyma cells were divided and enlarged after 2 days of culture. Cortex parenchyma cells were divided and meristematic nodules were developed from these cells after 4 days of culture. Finally, callus formed on outside of cortex and epidermis by division of meristematic nodules after 7 days of culture.

Effects of Subatrates Supplemented with Bioceramic. Crushed Shell and Elvanite on the Growth of Watermelon, Cucumber and Tomato Seedlings. (바이오세라믹, 패화석 및 맥반석의 혼입처리가 수박, 오이 및 토마토의 유묘성장에 미치는 영향)

  • 박순기;김홍기;정순주
    • Korean Journal of Organic Agriculture
    • /
    • v.6 no.1
    • /
    • pp.109-116
    • /
    • 1997
  • This experiment was carried out to examine the effect of various functional materials such as bioceramic podwers, crushed shells and elvanites supplemented to the each substrate on the seedlings growth of cucumber, watermelon and tomato. The seedlings were grown in pots filled with substrates of bioceramic podwers, crushed shell and elvanites. The growth of cucumber seedlings in terms of plant height, stem diameter, leaf width, leaf area, plant fresh and dry weight was promoted by adding the bioceramic. powder (1 to 2g/kg), crushed shells (20 to 80g/kg) or elvanites (20 to 80g/kg). Watermelon seedlings in terms of plant height, number of leaves and leaf area were greater than those of the control by adding bioceramics (1 to 2g/kg). Plant height was also promoted by the adding of bioceramic power from 16 days after treatment. But leaf area was increased from 8 days after treatment, while stem diameter was not affected. Watermelon seedlings were also influenced by adding curshed shells (20 to 80g/kg) and elvanites (20 to 40g/kg) into each substrate. The growth of characteristics of tomato seedlings were promoted by adding 1 to 3g/kg of bioceramics, 10 to 80g/kg of crushed shell or 20 to 40g/kg of elvanites, respectively. Especially, root growth was greatly influenced by bioceramic powder, whereas the shoot growth(leaves and stem) was stimulated by crushed shells and elvanites suppemented into substrate.

  • PDF

Antimicrobial Studies of Stem of Different Berberis Species

  • Singh, Meenakshi;Srivastava, Sharad;Rawat, Aks
    • Natural Product Sciences
    • /
    • v.15 no.2
    • /
    • pp.60-65
    • /
    • 2009
  • Berberis is an important medicinal plant, of the family Berberidaceae. Different Berberis species and their parts are very common in herbal drug markets of India and world over as an adulterant/substitute to 'Daruharidra' i.e. B. aristata DC. Antimicrobial activity of 50% hydroalcoholic extracts of stem of four Berberis species viz. B. aristata DC., B. asiatica Roxb. ex DC., B. chitria Lindl. and B. lycium Royle and the isolated alkaloid berberine were tested against eleven bacterial and eight fungal strains. The extracts with the strongest antibacterial activity was obtained from B. lycium followed by B. aristata, B. asiatica and B. chitria. Based on these results it is possible to conclude that the hydroalcoholic extract and alkaloid (berberine) has stronger and broader spectrum against bacterial strains as compared to fungal strains. The result obtained in the present study authenticates and support the use of these plants in folklore medicine for treatment of various infectious diseases caused by the bacterial pathogens. However, an attempt has been made to explore the possibilities of utilizing stem part rather than roots of these species with the aim to conserve this species which is over exploited due to diverse use of its root. These findings will stimulate the search for novel, natural products as new antibacterial/antifungal agents which may be useful to pharmaceutical industries.

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1

  • Bharathkumar, S.;Park, Jin-Woo;Han, Ji-Hee;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.333-343
    • /
    • 2009
  • Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.

Recent Advancement in the Stem Cell Biology (Stem Cell Biology, 최근의 진보)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

Position of Source Leaf Affects Translocation and Distribution of $C^{14}$ Photo-Assimilates in Tomato

  • Lee Sang-Gyu;Lee Chiwon W.
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.173-176
    • /
    • 2006
  • The relationship between source leaf position and photo-assimilate translocation and distribution was characterized for tomato (Lycopersicon esculentum Mill) grown in the greenhouse. Three different positions of source leaf on the stem (first node above or below the first fruit cluster and $5^{th}$ node above the first fruit cluster) were tested for their influence on $^{14}CO_2$ assimilation and transfer to different parts of the plant. The leaves at the $5^{th}$ node above the first fruit cluster transferred the highest (57%) proportion of $C^{14}$ to other plant parts, followed by leaves home on the first node below the first fruit cluster (50%), and the first node above the first fruit cluster (39%). In all treatments, fruits served as the strongest sink for $C^{14}$, followed by stem, leaf, and root tissues. The leaf home on the $5^{th}$ node above the first fruit cluster transferred the largest amount of $C^{14}$ to the second fruit cluster.

Effect of Subirrigation of Dolrido on the Growth of Rose (토양 미생물제제인 돌리도의 관주처리가 장미의 생육에 미치는 영향)

  • 손병구
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.889-895
    • /
    • 2003
  • This experiment was carried out to investigate the effect of subirrigation of Dolrido on the growth and development of stem cutting and young roes plant. Plant growth was measured at 20, 40, and 60 days after subirrigation of Dolrido. Plant height, stem diameter, number of leaves, leaf area and root length of cutting rose subirrigation were more affected than those of control. The growth of young seedling was significantly affected by subirrigation of Dolrido. Plant height, number of leaves, stem diameter, leaf area, fresh and dry weight were increased with subirrigation of Dolrido. However, T/R ratio was not affected by subirrigation of Dolrido. Growth of seedlings was promoted after 60 days treatment of Dolrido.

Effect of Activated Carbon on Growth of Agastache rugosa in Greenhouse

  • Choi Seong-Kyu;Park Yeong-Tyae;Yang Deok-Chun
    • Plant Resources
    • /
    • v.8 no.2
    • /
    • pp.171-174
    • /
    • 2005
  • This study was conducted to investigate the effect of activated carbon on leaf and stem production of Agastache rugosa as affected by different amounts of activated carbon. The results obtained are summarized as follows. Growth characteristics including plant height and leaf length were the highest when activated carbon added with $10\%$, suggesting that optimum amount of activated carbon was ranged from 10 to $20\%$. Growth and enlargement of the root were improved by $10\%$ AC. Activated carbon can be utilized as a soil conditioner in agricultural crop areas.

  • PDF

Growth and Ion Content of Korean Ginseng under Saline Condition

  • Cho, Jin-Woong;Seong, Bong-Jae;Kim, Hyun-Ho;Kim, Choong-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • This study was conducted to determine the effect of salinity on the growth and development of Korean ginseng (Panax ginseng C.A.Meyer) and to evaluate the inorganic ion content in Korean ginseng with different general complete fertilizer (GCF) and NaCI concentrations at two growth stages. The stem height of Korean ginseng treated with different GCF and NaCI concentrations decreased at the higher EC (2.0 dS m$^{-1}$ ), but there were no significant difference in the stem diameter, the leaf length, and the leaf width among different treatments. The root growth increased with the supply of GCF. Especially, the root growth was facilitated two times at 3.0 dS $\textrm{m}^{-1}$ as compared to control. But the root growth more sharply decreased with NaCI treatment than GCF. The $\textrm{K}^{+}$ and $\textrm{Mg}^{2+}$ content in leaves and roots increased with GCF at the early growth stage. At the late growth stage, the $\textrm{K}^{+}$ content in leaves decreased but the $\textrm{Ca}^{2+}$ and $\textrm{Mg}^{2+}$ content increased. The $\textrm{Ca}^{2+}$ and $\textrm{Mg}^{2+}$ content in roots increased but the $\textrm{K}^{+}$ content decreased. The $\textrm{Na}^{+}$ content in Korean ginseng increased sharply with NaCl treatment. The $\textrm{NO}_3^{-}$ content in leaves and $\textrm{NH}_4^{+}$ content in leaves and roots increased as GCF concentration increased. The $\textrm{NO}_3^{-}$ content in leaves, stems, and roots at the late growth stage decreased as NaCl concentration increased. The $\textrm{NH}_4^{+}$ content in leaves and roots decreased significantly at the early growth stage, but it decreased significantly in leaves and stems at the late growth stage. The root activity of Korean ginseng increased with GCF, but decreased as the EC increased with NaCl. The water potential of leaves with GCF showed no significant difference compare to control, but the water potential of leaves treated with NaCl decreased as EC increased.

Effect of LED Light Quality and Intensity on Growth Characteristics of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.61-61
    • /
    • 2020
  • This experiment was carried out using artificial bed soil and LED in the plastic film house(irradiation time: 07:00-17:00/day). Seedlings(n=63 per 3.3 m2) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity(40-160 µmol/m2/s). Average air temperature from April to September according to the light intensity test was 20.4℃-20.9℃. Average artificial bed soil temperature was 20.1℃-21.7℃. The test area where fluorescent lamp was irradiated tended to be somewhat lower than the LED irradiation area. The chemical properties of the test soil was as follows. pH levels was 6.6-6.7, EC levels 0.9-1.3 dS/m and OM levels 30.6-32.0%. The available P2O5 contents was 73.3-302.3 mg/kg. Exchangeable cations K and Ca contents were higher than the allowable ranges and mg content was high in the fluorescent lamp treatment. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PPFD(Photosynthetic Photon Flux Density) value, illuminance and solar irradiation. Fluorescent lamp treatment had high illuminance value, but PPFD and solar irradiation were lower than LED intensity 40 µmol/m2/s treatment. The photosynthetic rate increased(2.0-3.8 µmolCO2/m2/s) as the amount of light intensity increased, peaking at 120 µmol/m2/s, and then decreasing. The SPAD (chlorophyll content) value decreased as the amount of light intensity increased, and was the highest at 36.1 in fluorescent lamp treatment. Ginseng germination started on April 5 and took 14-17 days to germinate. The overall germination rate was 68.8-73.6%. The growth of aerial parts(plant height etc.) were generally excellent in the treatment of light intensity of 120-160 µmol/m2/s. The plant height was 41.9 cm, stem length was 24.1 cm, leaf length was 9.8 cm and stem diameter was 5.6 mm. The growth of underground part (root length etc.) was the best in the treatment with 120 µmol/m2/s of light intensity. Due to the root length was long(24.8 cm) and diameter of taproot was thick(18.7 mm), the fresh root weight was the heaviest at 24.8 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping-off caused by Rhizoctonia solani occurred 0.6-1.5% and incidence ratio of rusty root ginseng was 30.8-62.3%. It is believed that the reason for the high incidence of rusty root ginseng is that the amount of field moisture capacity of artificial bed soil is larger than the soil. Leaf discoloration rate was 13.7-32.3%.

  • PDF