• Title/Summary/Keyword: steering wheel

Search Result 422, Processing Time 0.022 seconds

Mathematical Model for Dynamic Performance Analysis of Multi-Wheel Vehicle (다수의 바퀴를 가진 차량의 동적 거동 해석의 수학적 모델)

  • Kim, Joon-Young
    • Journal of the Korea Convergence Society
    • /
    • v.3 no.4
    • /
    • pp.35-44
    • /
    • 2012
  • In this study, a simulation program is developed in order to investigate non steady-state cornering performance of 6WD/6WS special-purpose vehicles. 6WD vehicles are believed to have good performance on off-the-road maneuvering and to have fail-safe capabilities. But the cornering performances of 6WS vehicles are not well understood in the related literature. In this paper, 6WD/6WS vehicles are modeled as a 18 DOF system which includes non-linear vehicle dynamics, tire models, and kinematic effects. Then the vehicle model is constructed into a simulation program using the MATLAB/SIMULINK so that input/output and vehicle parameters can be changed easily with the modulated approach. Cornering performance of the 6WS vehicle is analyzed for brake steering and pivoting, respectively. Simulation results show that cornering performance depends on the middle-wheel steering as well as front/rear wheel steering. In addition, a new 6WS control law is proposed in order to minimize the sideslip angle. Lane change simulation results demonstrate the advantage of 6WS vehicles with the proposed control law.

The Development of Decelerating Motor of Electronic Power Steering (EPS 감속 모터 개발)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.2
    • /
    • pp.27-34
    • /
    • 2011
  • This study is making a product for the development of one process worm wheel of making a shape for gear for worm wheel without hobbing manufacturing process. Because of removing a hobbing process, plastic worm wheel for increased productivity and equivalent quality is produced in the result. As the result, this product is selling to Hyundai Mobis, Mando, TRW, KOYO/NSK/Showa(Japan), Delphai(America). The core technology and different strategy are as follows. The technology protection for molding of worm whee is currently patent process "Molding process of helical gear(No. 10-2008-0105908). Further patent procedure for "molding system for positioning decision of inserting boss is currently prepared. As gear molding procedure in hobbing machine without gear machining procedure, most of all, core development technology which is making a gear tooth is main topic. So that, in case of currently developed worm wheel, because core and mold base are not developed in the first procedure, gear is machining in hobbing M/C as the second procedure. In the later, patent for mold base structure will be prepared in this study results.

A Steering Wheel Angle Analysis of Old and Young Drivers in Right Turning at Intersection

  • Ryu, Tae-Beum;Min, Byung-Chan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.285-290
    • /
    • 2011
  • Due to the ageing-related degradation in physical and cognitive abilities, the elderly have difficulty in car driving and this is related to the high rate of car accidents among them. This study investigated the kinematic characteristics of old drivers' steering in right turning at intersections by comparing with young drivers. Thirteen old(60~70) and thirteen young(20~30) drivers who participated in the experiment turned their cars right side at intersections in a driving simulator. As results, the completion time of right turning at intersection of old drivers was larger than that of young drivers. The speeds of vehicle at the beginning and ending point of the right turning area of old drivers were smaller than those of young drivers, and also the steering angle at the ending point of the turning area of the former was smaller than that of the latter. The normalized jerk of old driver's steering was significantly larger than that of young drivers. These results indicate that old drivers modify their steering movement repeatedly and take the driving strategy of avoiding risks due to their reduced physical capabilities.

Development and Evaluation of Automatic Steering System for Parallel Parking (평행주차를 위한 자동 조향 제어시스템 개발 및 성능평가)

  • Lee, Dae Hyun;Kim, Yong Joo;Kim, Tae Hyeong;Chung, Sun Ok;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.18-26
    • /
    • 2016
  • This research is conducted to develop an automatic steering system for parallel parking, and the performance of the system was evaluated by parallel parking a conventional vehicle. The automatic steering system consisted of MDPS (motor driven power steering) to control steering, ESC (electronic stability control) to acquire wheel speed, ultrasonic sensors to recognize the parking space, and a controller to communicate and handle data. The parallel parking process using the automatic steering control consisted of parking space recognition, parking path generation, and parking path tracking. The path for parallel parking was generated based on a kinematic model of a conventional vehicle, and a PI controller was used to control the steering angle for path tracking. Parallel parking using the automatic steering control was conducted according to vehicle speed conditions. The results show that the errors on the x-axis and y-axis were below 0.54 m and 0.14 m, respectively, and the error on the steering angle was less than $1^{\circ}$. Therefore, it is possible to implement parallel parking using an automatic steering control system for conventional vehicles.

CONTROL PHILOSOPHY AND ROBUSTNESS OF ELECTRONIC STABILITY PROGRAM FOR THE ENHANCEMENT OF VEHICLE STABILITY

  • Kim, D.S.;Hwang, I.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.201-208
    • /
    • 2006
  • This paper describes the control philosophy of ESP(Electronic Stability Program) which consists of the stability control the fault diagnosis and the fault tolerant control. Besides the functional performance of the stability control, robustness of control and fault diagnosis is focused to avoid the unnecessary activation of the controller. The look-up tables are mentioned to have the accurate target yaw rate of the vehicle and obtained from vehicle tests for the whole operation range of the steering wheel angle and the vehicle speed. The wheel slip control with a design goal of wheel slip invariance is implemented for the yaw compensation and the target wheel slip is determined by difference between the target yaw rate and actual yaw rate. Since the ESP has a high severity level and the robust control is required, the robustness margin for the stability control is determined according to several uncertainties and the robust fault diagnosis is performed. Both computer simulation and test results are shown in this paper.

SENSITIVITY ANALYSIS OF SUV PARAMETERS ON ROLLOVER PROPENSITY

  • Jang, B.C.;Marimuthu, R.P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.703-714
    • /
    • 2006
  • The growing concern surrounding rollover incidences and consequences of Sports Utility Vehicles(SUV) have prompted to investigate the sensitivity of critical vehicle parameters on rollover. In this paper, dynamic rollover simulation of Sports Utility Vehicles is carried out using a validated nonlinear vehicle model in Matlab/Simulink. A standard model is considered and critical vehicle parameters like CG height, track width and wheel base are varied within chosen specified limits to study its influence on roll behavior during a Fishhook steering maneuver. A roll stability criterion based on Two Wheel Lift Off(TWLO) phenomenon is adopted for rollover propensity prediction. Further dynamic rollover characteristics of the vehicle are correlated with Static Stability Factor(SSF), Roll Stability Factor(RSF) and Two Wheel Lift Off Velocity(TWLV). These findings will be of immense help to SUV chassis designers to determine safety limits of critical vehicle parameters and minimize rollover incidences.

Development of a Wheel Type Locomotive Mechanism Using Micro motor for a Capsule-Type Endoscope (모터를 이용한 바퀴형 체내이동 메커니즘의 개발)

  • Lee, Young-Jae;Kim, Byung-Kyu;Lim, Young-Mo;Park, Jong-Oh;Hong, Yeh-Sun;Kim, Soo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.289-294
    • /
    • 2001
  • The two prototypes of a Wheel Type Locomotive Mechanism Using Micro motor for a Capsule-Type Endoscope are outlined and realized. Basic concept of these mechanisms is to use a rod-shaped wheel, with which these mechanisms can go over the haustral folds inside colon. The actuator of Prototype I is geared dc motor and the actuator for steering is Shape Memory Alloy. Prototype I goes through the whole area of colonoscopy training model. Prototype II can not only go forward and backward, but also be steerable with 2 geared dc motors. Prototype II goes through dead pig colon.

  • PDF

A Study on In-wheel Motor Control to Improve Vehicle Stability Using Human-in-the-Loop Simulation

  • Ko, Sung-Yeon;Ko, Ji-Weon;Lee, Sang-Moon;Cheon, Jae-Seung;Kim, Hyun-Soo
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.536-545
    • /
    • 2013
  • In this study, an integrated motor control algorithm for an in-wheel electric vehicle is suggested. It consists of slip control that controls the in-wheel motor torque using the road friction coefficient and slip ratio; yaw rate control that controls the in-wheel motor torque according to the road friction coefficient and the yaw rate error; and velocity control that controls the vehicle velocity by a weight factor based on the road friction coefficient and the yaw rate error. A co-simulator was developed, which combined the vehicle performance simulator based on MATLAB/Simulink and the vehicle model of CarSim. Based on the co-simulator, a human-in-the-loop simulation environment was constructed, in which a driver can directly control the steering wheel, the accelerator pedal, and the brake pedal in real time. The performance of the integrated motor control algorithm for the in-wheel electric vehicle was evaluated through human-in-the-loop simulations.

Study for Semi-Steering system for Urban Maglev (도시형자기부상차량의 반능동 조향장치에 대한 연구)

  • Lee, Nam-Jin;Kang, Kwang-Ho;Lee, Won-Sang
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1080-1084
    • /
    • 2011
  • Urban maglev should have such characteristics as not only environmentally friendliness and excellent driving capability but also curve negotiation performance because its routes have many sharp curves. Due to normal mechanism of urban maglev its relative displacements of secondary spring are bigger than conventional railway vehicle and the centering force of levitation magnet is smaller than wheel-on-rail system. These features of maglev affect the curving negotiation and so the additional steering device is to be required on Urban maglev to improve the running performance at sharp curve of less than about R50m. Some developed urban maglev had the passive steering device which consists of mechanical linkage or hydraulic cylinder and closed-route piping. But it has drawback as complexity of layout of understructure of vehicle and functional limitation of passive mechanism regarding transient curve. These demerits could be solved by using active steering system. But it has a weak point that an active device should have actuators and additional inverter or hydraulic power source. In this paper, the semi-active steering system for urban maglev is to be introduced.

  • PDF