• Title/Summary/Keyword: steering control system

Search Result 556, Processing Time 0.029 seconds

The Development of a Beam Steering System for X-band 2-D Phased Array Antenna (X-대역 2차원 위상배열안테나 빔조향 시스템 개발)

  • Kim, Doo-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.92-98
    • /
    • 2008
  • A beam steering system of X-band 2-D phased array antenna for radar application is developed. The beam steering system consists of real-time command generator, beam steering unit, control PCB of array module and power supply. It plays a role of beam steering and on-line check of phased array antenna. The performance of beam steering system is verified with pulse timing of current control in phase shifters and measurement of far-field of phased array antenna. The developed beam steering system offers basic technology to develop full-scale beam steering system of multi-function radar.

Imlpememtation of the Autonomous Guided Vehicle Driving System for Durability Test (차량 내구성 테스트를 위한 무인 주행 시스템의 구현)

  • 정종원;윤영진;이영진;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.608-613
    • /
    • 2002
  • In this paper we developed the MPC sensor for steering control and steering control of the AGVDS(Autonomous Guided Vehicle Driving System) for Durability test. Among durability tests, the accelerated durability test has been widely used to evaluate the durability of vehicle structure and chassis parts in a short period of time on the designed road that has severe surface conditions. However it increased the drivers fatigue mainly caused by the severe driving conditions. The driver's difficulty to maintain the constant speed and control the steering wheel reduces the reliability of test results. In addition to the general detecting sensor for steering control was restricted by surrounding condition. So we need to develop steering control sensor was robust in the bad driving condition. In this paper we developed steering control sensor using magnetic induction which is robust in the bad driving condition and implemented the AGVDS.

  • PDF

Integrated Dynamics Control System for SUV with Front Brake Force and Front Steering Angle (전륜 제동력 및 전륜 조향각을 이용한 SUV 차량의 통합운동제어시스템 개발)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.22-27
    • /
    • 2022
  • An integrated front steering system and front brake system (FSFB) is developed to improve the stability and controllability of an SUV. The FSFB simultaneously controls the additional steering angle and front brake pressure. An active front steering system (AFS) and an active front brake system (AFB) are designed for comparison. The results show that the FSFB enhances the lateral stability and controllability regardless of road and running conditions compared to the AFS and AFB. As a result, the yaw rate of the SUV tracks the reference yaw rate, and the side slip angle decreases. In addition, brake pressure control is more effective than steering angle control in improving the stability and steerability of the SUV on a slippery road. However, this deteriorates comfort on dry or wet asphalt.

Steering Wheel Torque Control of Electric Power Steering by PD-Control

  • Pang, Du-Yeol;Jang, Bong-Choon;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1366-1370
    • /
    • 2005
  • As the development of microprocessor technology, electric power steering (EPS) system which uses an electric motor came to use a few years ago. It can solve the problems associated with hydraulic power steering. The motor only operates when steering assistance is needed, so it can save fuel and can reduce weight and cost by eliminating hydraulic pump and piping. As one of performance criteria of EPS systems, the transmissibility from road wheel load to steering wheel torque is considered in the paper. The transmissibility can be studied by fixing the steering wheel and calculating the torque needed to hold the steering wheel from road wheel load. A proportion-plus-derivative control is needed for EPS systems to generate desired static torque boost and avoid transmissibility of fluctuation. A pure proportion control can't satisfy both requirements.

  • PDF

Vehicle Steering System Analysis for Enhanced Path Tracking of Autonomous Vehicles (자율주행 경로 추종 성능 개선을 위한 차량 조향 시스템 특성 분석)

  • Kim, Changhee;Lee, Dongpil;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.27-32
    • /
    • 2020
  • This paper presents steering system requirements to ensure the stabilized lateral control of autonomous driving vehicles. The two main objectives of a lateral controller in autonomous vehicles are maintenance of vehicle stability and tracking of the desired path. Even if the desired steering angle is immediately determined by the upper level controller, the overall controller performance is greatly influenced by the specification of steering system actuators. Since one of the major inescapable traits that affects controller performance is the time delay of the steering actuator, our work is mainly focused on finding adequate parameters of high level control algorithm to compensate these response characteristics and guarantee vehicle stability. Actual vehicle steering angle response was obtained with Electric Power Steering (EPS) actuator test subject to various longitudinal velocity. Steering input and output response analysis was performed via MATLAB system identification toolbox. The use of system identification is advantageous since the transfer function of the system is conveniently obtained compared with methods that require actual mathematical modeling of the system. Simulation results of full vehicle model suggest that the obtained tuning parameter yields reduced oscillation and lateral error compared with other cases, thus enhancing path tracking performance.

Development of an electronically-controlled power steering for passenger cars (승용차용 전자제어식 조향장치의 개발)

  • 홍예선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.698-703
    • /
    • 1990
  • This paper describes an Electronically-controlled Power Steering system which is developed by the modification of a conventional power steering based on so called rotary valve technology. The steering effort is influenced by the electrohydraulic flow rate control of the pressurized oil to rotary valve. The vehicle speed and the steering angular velocity are used to calculate and output a signal to proportional flow rate control valve by the Electronic Control Unit. The improvement of the steering feel was satisfactory compared with that of the original conventional power steering.

  • PDF

Improvement of the Yaw Motion for Electric Vehicle Using Independent Front Wheel Steering and Four Wheel Driving (독립 전륜 조향 및 4륜 구동을 이용한 전기 차량의 선회 운동 향상)

  • Jang, Jae-Ho;Kim, Chang-Jun;Kim, Sang-Ho;Kang, Min-Sung;Back, Sung-Hoon;Kim, Young-Soo;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.45-55
    • /
    • 2013
  • With the recent advancement of control method and battery technology, the electric vehicle have been researched to replace the conventional vehicle with electric vehicle with the view point of the environmental concerns and energy conservation. An electric vehicle which is equipped with the independent front steering system and in-wheel motors has advantage in terms of control. For example, the different torque which generated by left and right wheels directly can make yaw moment and the independent steering using outer wheel control is able to reduce the sideslip angle. Using of independent steering and driving system, the 4 wheel electric vehicle can improve a performance better than conventional vehicle. In this paper, we consider the method for improving the cornering performance of independent front steering system and in-wheel motor used electric vehicle with the compensated outer wheel angle and direct yaw moment control. Simulation results show that the method can improve the cornering performance of 4 wheel electric vehicle. We also apply the steering motor failure to steer the vehicle turned by the torque difference without steering. This paper describes an independent front steering and driving, consist of three parts; Vehicle Model, Control Algorithm for independent steering and driving and simulation. First, vehicle model is application of TruckSim software for independent front steering and 4 wheel driving. Second, control algorithm describes the reduced sideslip and direct yaw moment method in view of cornering performance. Last is simulation and verification.

Force-reflecting electronic power steering system using fuzzy logic (퍼지 로직을 이용한 힘반사형 전동 조향 장치)

  • 박창선;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.353-356
    • /
    • 1997
  • Vehicle steering system determines the direction of a vehicle. A manual steering system consists of mechanical connections between the steering wheel and tires. Recent power steering system adds an actuator to help a driver to steer easily at low speed. However, at front collision, the driver can be injured by steering shaft and the power steering pump decreases the engine power. To solve these problems, electronic power steering system which connects the steering wheel and tires with electronic connection is proposed, that has advantages such as decrease of engine load and increase of driver safety reactive. Since the ratio between driver's steering torque and steering torque of tires can be controlled freely, the torque which is delivered from the road to the driver through tires and steering wheel can be reshaped to make the driver feel comfortable. In this paper, the ratio of delivering steering torque and the magnitude of force to be delivered from road to driver has been controlled using fuzzy controller, and it's effectiveness has been shown through simulation results.

  • PDF

A Review of Rear Axle Steering System Technology for Commercial Vehicles

  • Khan, Haroon Ahmad;Yun, So-Nam;Jeong, Eun-A;Park, Jeong-Woo;Yoo, Chung-Mok;Han, Sung-Min
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.152-159
    • /
    • 2020
  • This study reviews the rear or tag axle steering system's concepts and technology applied to commercial vehicles. Most commercial vehicles are large in size with more than two axles. Maneuvering them around tight corners, narrow roads, and spaces is a difficult job if only the front axle is steerable. Furthermore, wear and tear in tires will increase as turn angle and number of axles are increased. This problem can be solved using rear axle steering technology that is being used in commercial vehicles nowadays. Rear axle steering system technology uses a cylinder mounted on one of rear axles called a steering cylinder. Cylinder control is the primary objective of the real axle steering system. There are two types of such steering mechanisms. One uses master and slave cylinder concept while the other concept is relatively new. It goes by the name of smart axle, self-steered axle, or smart steering axle driven independently from the front wheel steering. All these different types of steering mechanisms are discussed in this study with detailed description, advantages, disadvantages, and safety considerations.

Design of C-EPS (Column type - Electric Power Steering) Simulator and Development of Control Algorithm (C-EPS (C-type Electric Power Steering) 시뮬레이터 설계 및 제어 알고리즘 개발)

  • Park, Myung-Wook;Moon, Hee-Chang;Kim, Jung-Ha;Crane III, Carl D.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.566-571
    • /
    • 2010
  • EPS (Electric Power Steering) is important device for improving vehicle's dynamics and static performances. This paper deals with simulator design for C-EPS (Colum type-EPS), development assist and returnability control algorithm. First, C-EPS system model was simply designed because EPS system is complex control system that has many unknown variables. These parameters were simplified through assumptions. Second, C-EPS simulator was designed for development of control algorithm. This simulator has SAS (Steering Angle Sensor), dual torque sensor, dual load cell for measuring rack force, dual linear actuator for generating tire force and Data Acquisition System. Using this simulator, control methods ware tested. Third, control algorithm was designed for torque assist and returnability. Assist torque map and returnability torque map were found by lots of simulation test. These torque maps were tuned for EPS actuator control. The simulation result was compared with non-EPS system result. In this research, the C-EPS simulator was designed for development of control algorithm about torque assistant and returnability. Using this simulator, control algorithm was improved.