• Title/Summary/Keyword: steeping

Search Result 109, Processing Time 0.03 seconds

PREDICTING MALTING QUALITY IN WHOLE GRAIN MALT COMPARED TO WHOLE GRAIN BARLEY BY NEAR INFRARED SPECTROSCOPY

  • Black, Cassandra K.;Panozzo, Joseph F.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1618-1618
    • /
    • 2001
  • Predicting quality traits using near infrared (NIR) spectroscopy on whole grain samples has gained wide acceptance as a non-destructive, rapid and cost effective technique. Barley breeding programs throughout southern Australia currently use this technology as a tool for selecting malting quality lines. For the past 3 years whole grain barley calibrations have been developed at VIDA to predict malting quality traits in the early generation selections of the breeding program. More recently calibrations for whole grain malt have been developed and introduced to aid in selecting malted samples at the mid-generation stage for more complex malting quality traits. Using the same population set, barley and malt calibrations were developed to predict hot water extracts (EBC and IoB), diastatic power, free $\alpha$-amino nitrogen, soluble protein, wort $\beta$-glucan and $\beta$-glucanase. The correlation coefficients between NIR predicted values and laboratory methods for malt were all highly significant ($R^2$ > 0.84), whereas the correlation coefficients for the barley calibrations were lower ($R^2$ > 0.57) but still significant. The magnitude of the error in predicting hot water extract, diastatic power and wort $\beta$-glucan using whole grain malt was reduced by 50% when compared with predicting the same trait using whole grain barley. This can be explained by the complex nature of attempting to develop calibrations on whole grain barley utilizing malt data. During malting, the composition of barley is modified by the action of enzymes throughout the steeping and germination stages and by heating during the kilning stage. Predicting malting quality on whole grain malt is a more reliable alternative to predicting whole grain barley, although there is the added expense of micro-malting the samples. The ability to apply barley and malt calibrations to different generations is an advantage to a barley breeding program that requires thousands of samples to be assessed each year.

  • PDF

Physicochemical Properties of Cross-linked Waxy Rice Starches and Its Application to Yukwa (가교화 찹쌀전분의 물리화학적 성질 및 유과제조 특성)

  • Yu, Chul;Choi, Hyun-Wook;Kim, Chong-Tai;Ahn, Soon-Cheol;Choi, Sung-Won;Kim, Byung-Yong;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.534-540
    • /
    • 2007
  • In this study, waxy rice starch was chemically modified using phosphorous oxychloride ($POCl_3$, 0.002-0.008%). Then the physicochemical properties of resulting cross-linked waxy rice starches were investigated in order to reduce the steeping time of Yukwa (a Korean oil-puffed rice snack) processing. The swelling powers of the cross-linked waxy rice starch samples were higher than the native waxy rice starch at temperatures above $60^{\circ}C$, and their increases were proportional to the $POCl_3$, concentration. The solubility of the cross-linked waxy rice starch was lower (1.6-3.4%) than the native waxy rice starch (2.7-6.1%). However, the moisture sorption isotherm of the cross-linked waxy rice starch was not significantly different from the native waxy rice starch. The rapid visco analyze. (RVA) pasting temperatures $(65.4-67^{\circ}C)$ of the cross-linked waxy rice starch were lower than those of the native starch $(67^{\circ}C)$. The RVA peak viscosities (287-337 RVU) of the cross-linked waxy rice starch were higher than that of native starch (179 rapid visco units (RVU)), and increased with increasing $POCl_3$ concentration. For the differential scornning calorimeter thermal characteristics, although Tc shifted toward higher temperatures with cross-linking, the To, Tp, and amylopectiin melting enthalpy of the cross-linked waxy rice starch showed no differences compared to the native waxy rice starch. The X-ray diffraction patterns of both the native and cross-linked waxy rice starches showed typical A-type crystal patterns, suggesting that cross-linking mainly occurs in the amorphous regions of starch granules. Therefore, the cross-linking reaction did not change the crystalline region, but altered the amorphous region of the waxy rice starch molecules, resulting in changes of solubility and RVA pasting properties in the cross-linked waxy rice starch. In summary, since cross-linked waxy rice starch has a high puffing efficiency and no browning reaction, it may be applicable for Yukwa processing without a long steeping process.

Changes in Chemical Composition of glutinous rice during steeping and Quality Properties of Yukwa (찹쌀의 수침 중 이화학적 특성변화와 유과의 품질특성)

  • Lee, Yong-Hwan;Kum, Jun-Seok;Ku, Kyung-Hyung;Chun, Hyang-Sook;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.737-744
    • /
    • 2001
  • This study was carried to investigate the changes in physical and chemical properties during preparation of Yukwa. Protein content of glutinous rice was decreased during soaking time and acid and pH values were increased while contents of lipid and ash were not changed. Particle size distribution showed thate average particle size of 7 days soaking treatment smaller than those of 3 days and starch damage of glutinous rice flour was increased during soaking time. The major flavor components after soaking were found ethyl ester acetic acid, ethanol, 2-butan -ol, 2-methyl 1-propanol, 1-butanol, 3-methyl 1-butanol and 1-pentanol, propanoic acid. Content of acetic acid and butanoic acid were rapidly increased during soaking time. Results for ratio of storage modulus(G') and loss modulus(G') in glutinous rice flour dough indicated $tan{\delta}$ was increased for a while and decreased as frequency increased. G' value was very similar with G' value after steaming which means rubber-like property while G' and G' value were changed after during storage time. Treatment at $-20^{\circ}C$ had the highest hardness for cutting degree of dough. There was no difference in color value between different water contents. Hardness of Bandegi (sheet) was decreased as water content increased and the highest popping value was obtained at 18% of water contents. Adding 3% soaked bean had higher redness value of Yukwa and lower value in yellowness.

  • PDF

Isolation and Physicochemical Properties of Rice Starch from Rice Flour using Protease (단백질분해효소에 의한 쌀가루로부터 쌀전분의 분리 및 물리화학적 특성)

  • Kim, ReeJae;Oh, Jiwon;Kim, Hyun-Seok
    • Food Engineering Progress
    • /
    • v.23 no.3
    • /
    • pp.193-199
    • /
    • 2019
  • This study aimed to investigate the impact of protease treatments on the yield of rice starch (RST) from frozen rice flours, and to compare the physicochemical properties of RST by alkaline steeping (control) and enzymatic isolation (E-RST) methods. Although the yield of E-RST, prepared according to conditions designed by the modified 23 complete factorial design, was lower than the control, the opposite trends were observed in its purity. E-RST (RST1, isolated for 8 h at 15℃ with 0.5% protease; RST2, isolated for 24 h at 15℃ with 1.5% protease; RST3, isolated for 24 h at 15℃ with 0.5% protease) with the yields above 50% were selected. Amylose contents did not significantly differ for the control and RST2. Relative to the control, solubilities were higher for all E-RST, but swelling power did not significantly differ for E-RST except for RST1. Although all E-RST revealed higher gelatinization temperatures than the control, the reversed trends were found in the gelatinization enthalpy. The pasting viscosities of all E-RST were lower than those of the control. Consequently, the enzymatic isolation method using protease would be a more time-saving and eco-friendly way of preparing RST than the alkaline steeping method, even though its characteristics are different.

Manufacturing of Goami Flakes by using Extrusion Process (압출성형공정을 이용한 고아미 후레이크 제조)

  • Tie, Jin;Lee, Eui-Suk;Hong, Soon-Teak;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.146-151
    • /
    • 2007
  • Resistant starch (RS) content, paste viscosity, water solubility and absorption index, bulk density, color, compression force, and bowl life of Goami flakes manufactured by extrusion process were determined to evaluate Goami (high fiber rice) as a food material. Various extrusion process conditions included barrel temperature (90, 110, $130^{\circ}C$) and moisture content (50, 55%). RS content in the extruded pellet and defatted flake ranged from $8.00{\sim}8.56%$ and $6.57{\sim}9.53%$ respectively. RS content increased as moisture increased from 50% to 55%. Peak viscosity, trough viscosity, final viscosity, and setback viscosity of the extruded pellet and defatted flake decreased with steeping for 1 hr, and the breakdown viscosity significantly increased. The water solubility and absorption index increased in the flake compared to Goami and extruded pellet. The water solubility index of the extruded pellet was lower than that of Goami, while its water absorption index was higher than Goami. The bulk density of the flake ranged from $0.35{\sim}0.44$ g/mL. The bowl life of the flake was $12.4{\sim}19.4$ min, which was longer than commercial breakfast cereals on the market.

Optimizing Cooking Condition of Short Grain Rice Containing Sea-tangle Patch (다시마밥 제조조건의 최적화)

  • Shin, Eun-Soo;Lee, Jin-Hwa;Park, Kyong-Tae;Ryu, Hong-Soo;Jang, Dae-Heung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1726-1734
    • /
    • 2004
  • Response surface methodology on sensory evaluation was used to optimize cooking condition of cooked short grain rice (CSR) and cooked short grain rice containing grainy sea-tangle patch (CSTR). Texture profile analysis and nutritional evaluation were also performed. For maximizing overall acceptability, it can be predicted sea-tangle patch 14%, added water 1.67 times of rice and sea-tangle amount and steeping time 47 min as optimum cooking conditions from sensory evaluation conducted by the forties panelist. Hardness of pressure cooked short grain rice containing grainy sea-tangle patch (CSTR) were lower than cooked short grain rice (CSR), but it showed similar as CSR in adhesiveness, chewiness and higher in springiness and cohesiveness. In addition CSTR was delayed retrogradation compared with CSR. The nutritional Quality of CSTR showed higher level in total dietary fiber, protein, ash than CSR, but lower in protein digestibility, C-PER, gelatinization degree compared with CSR.

Physicochemical Properties of Waxy Rice, Waxy Rice Flour and Waxy Rice Starch During Steeping (수침에 따른 찹쌀, 찹쌀 가루 및 찹쌀 전분의 물리화학적 특성 변화)

  • Kim, Sung-Woo;Kim, Dong-Seob;Kim, Byung-Yong;Baik, Moo-Yeol
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.277-284
    • /
    • 2008
  • The objective of this study was to investigate the effect of soaking time on physicochemical properties of waxy rice, waxy rice flour and waxy rice starch. Waxy rice (WR), waxy rice flour (WRF), waxy rice starch (WRS) were soaked at $18^{\circ}C$ for 14 days and dried at $40^{\circ}C$. Dried samples were grounded and sieved using 180 mesh. Physicochemical properties of the three samples, such as swelling power, solubility, moisture sorption isotherms and pasting properties using rapid visco analyzer (RVA) and crystal pattern using X-ray diffractometer were determined. In all samples, soaking time greatly influenced moisture sorption isotherms but no typical pattern was shown. Swelling power was not greatly changed by soaking time in the three samples. Solubility increased with increasing soaking time in all three samples, indicating that some soluble particles were exuded during soaking. In RVA pasting properties, WR and WRF showed a similar pattern, while WRS showed different pasting properties, suggesting that rice protein plays a significant role in pasting properties. X-ray diffraction patterns of all three samples showed typical A-type crystal pattern suggesting that soaking did not affect crystalline region of samples.

Physicochemical Properties of Hydroxypropylated Waxy Rice Starches and its Application to Yukwa (하이드록시프로필화 찹쌀 전분의 이화학적 성질 및 유과제조 특성)

  • Yu, Chul;Choi, Hyun-Wook;Kim, Chong-Tae;Kim, Dong-Seob;Choi, Sung-Won;Park, Young-Joon;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.385-391
    • /
    • 2006
  • Physicochemical properties of hydroxypropylated waxy rice starches were investigated to reduce steeping-time of yukwa (Korean oil-puffed rice snack) processing. Swelling power of hydroxypropylated waxy rice starch increased at relatively higher temperature $(60^{\circ}C)$ than native waxy rice starch $(70^{\circ}C)$. Solubility of hydroxypropylated waxy rice starches increased with increasing propylene oxide content. Pasting temperature $(66.3-66.9^{\circ}C)$ and peak viscosity (216-232 RVU) of hydroxypropylated waxy rice starch were higher than those of native starch (179 RVU) and increased with increasing propylene oxide content. DSC thermal transitions of hydroxypropylated waxy rice starches shifted toward higher temperature. Amylopectin melting enthalpy of hydroxypropylated waxy rice starch (8.4-9.2 J/g) was similar to native starch (9.0 J/g). X-ray diffraction patterns of native and hydroxypropylated waxy rice starches showed typical A-type pattern with no significant differences between them, suggesting hydroxypropylation only affected amorphous region. Results suggest hydroxypropylated waxy rice starch is not applicable for yukwa due to low puffing efficiency and dark color.

Manufacture of Dropwort Extract Using Brown Sugar, Fructose Syrup and Oligosaccharides (흑설탕, 과당, 올리고당을 이용한 미나리 추출물의 제품화)

  • Son, Min-Jung;Cha, Chun-Geun;Park, Jung-Hyun;Kim, Chan-Shick;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.9
    • /
    • pp.1485-1489
    • /
    • 2005
  • The dropwort was fermented by steeping with brown sugar, fructose syrup or oligosaccharide at room temperature for 2 month, and then stored at cold room for 6 months. The dropwort extracts prepared with three different sugars showed more than $50^{\circ}$Brix, below pH 4.0 and about $0.7\%$ titratable acidity. The dropwort extract with brown sugar showed $1.6{\times}10^6$ viable cell counts and $21.2\%$ reducing sugar. Formation of $CO_2$ gas was superior to the dropwort fermented with brown sugar or oligosaccharide. The dropwort extract with fructose syrup indicated $9.0{\times}10^3$ viable cell counts and $50.1\%$ reducing sugar. Microorganism present in fermented dropwort extract was effectively pasteurized by the addition of $3\%$ citric acid and heat-treatment at $85^{\circ}C$ for 15 min, resulting in the less production of $CO_2$ gas. The dropwort extracts prepared with brownsugar, fructose syrup or oligosaccharide was suitable for the standardization that required for plant extract in Korea Food Codex.

Saccharification of Uncooked Starch (무증자 전분의 당화에 관한 연구)

  • Lee, S.Y.;Shin, Y.C.;Lee, S.H.;Park, S.S.;Kim, H.S.;Byun, S.M.
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.463-471
    • /
    • 1984
  • For the eventual alcohol production from uncooked starch, an efficient saccharification process was examined by using the combined action of steeping, pectin depolymerase, ${\alpha}-amylase$ and glucoamylase. The total sugar content of rice, sweet potato and tapioka used were 4.53, 4.26, and 3.92 mmole/g sample. $70\;{\pm}\;10%$ of the total sugar was hydrolyzed when cooked starch was saccharified under the condition which is currently used in industry. The smaller starch particle was used, the more saccharification was obtained. Efficient saccharification was obtained by treatment with 5% $H_2SO_4$ (sample: working volume = 1:2) at $60^{\circ}C$ for 12 hr. Optimization was carried out for the saccharification of uncooked starch by the combined action of pectin depolymerase, ${\alpha}-amylase$, and glucoamylase. The conditions are: pectin depolymerase; pH 4.5, $45^{\circ}C$, 2 hr, ${\alpha}-amylase$; pH 6.0, $60^{\circ}C$, 1 hr, and glucoamylase; pH 3.5, $60^{\circ}C$, 1 hr. Simultaneous treatment of the combined action of macerating, liquifying and saccharifying enzymes yielded better result than stepwise treatment of 3 enzymes. Degrees of saccharification of uncooked tapioka, rice and sweet potato were 82, 90.5, and 84.5%, respectively on the basis of total sugar, under the optimized conditions.

  • PDF