• Title/Summary/Keyword: steel-reinforced concrete (RC)

Search Result 828, Processing Time 0.029 seconds

Experimental Evaluation for Seismic Performance of RC Bridge Piers with FRP Confinement (FRP 횡보강근을 이용한 RC 교각의 내진성능 평가 실험)

  • 정영수;박진영;박창규;서진원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.377-384
    • /
    • 2003
  • Recently, there are much concerns about new and innovative transverse materials which could be used instead of conventional transverse steel in reinforced concrete bridge piers. FRP materials could be substituted for conventional transverse steel because of their sufficient strength, light weight, easy fabrication, and useful applicability to any shapes of pier sections, such as rectangular or circular sections. The objective of this research is to evaluate the seismic performance of reinforced concrete bridge pier specimens with FRP transverse reinforcement by means of the Quasi-Static test. In the first task, test columns were made using FRP rope, but these specimens appeared to fail at low displacement ductility levels due to insufficient confinement of strand extension itself. Therefore, the second task was to evaluate the seismic performance of test specimens transversely confined with FRP band. Although FRP banded specimens showed lower seismic performance than the specimen with spiral reinforcing steel, it satisfied with the response modification factor, 3, required for the single column of Korea bridge roadway design code. It was concluded that FRP band could be efficiently substituted for conventional reinforcing steel.

  • PDF

Experimental Study on the DT Steel Frame Seismic Reinforcement Construction Method (DT 스틸 프레임 내진보강공법에 관한 실험적 연구)

  • Woo, Mi-So;Lee, Dong-Un;Yoon, Jeong-Bae;Moon, il-Gwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.4-5
    • /
    • 2020
  • The research presented in this paper is subject to RC frame that increases seismic capacity by attaching DT(Double T type) steel frame to reinforced concrete column. The object of this study is not only to build experimental database providing necessary information for retrofit column but also to formulate modeling parameters of RC frame retrofitted by DT steel frame through comparing analysis for analytical model predicting inelastic behavior of reinforced concrete members.

  • PDF

Neuro-Fuzzy modeling of torsional strength of RC beams

  • Cevik, A.;Arslan, M.H.;Saracoglu, R.
    • Computers and Concrete
    • /
    • v.9 no.6
    • /
    • pp.469-486
    • /
    • 2012
  • This paper presents Neuro-Fuzzy (NF) based empirical modelling of torsional strength of RC beams for the first time in literature. The proposed model is based on fuzzy rules. The experimental database used for NF modelling is collected from the literature consisting of 76 RC beam tests. The input variables in the developed rule based on NF model are cross-sectional area of beams, dimensions of closed stirrups, spacing of stirrups, cross-sectional area of one-leg of closed stirrup, yield strength of stirrup and longitudinal reinforcement, steel ratio of stirrups, steel ratio of longitudinal reinforcement and concrete compressive strength. According to the selected variables, the formulated NFs were trained by using 60 of the 76 sample beams. Then, the method was tested with the other 16 sample beams. The accuracy rates were found to be about 96% for total set. The performance of accuracy of proposed NF model is furthermore compared with existing design codes by using the same database and found to be by far more accurate. The use of NF provided an alternative way for estimating the torsional strength of RC beams. The outcomes of this study are quite satisfactory which may serve NF approach to be widely used in further applications in the field of reinforced concrete structures.

Automated Seismic Design Method for Reinforced Concrete Structures (철근 콘트리트 구조물의 전산에 의한 내진설계법)

  • 정영수;전준태;김세열
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.111-119
    • /
    • 1991
  • Most of the conventional aseismic design methods for reinforced concrete structures, based on the strong¬column weak-beam design concept, do not necessarily the state of damage distribution over the entire frame. This paper introduces a seismic damage-controlled design method for RC frames which aim at individual member damage indices. Three design parameters, namely the longitudinal steel ratio, the confinement steel ratio and the frame member depth, were studied for their influence on the frame response to an earthquake. The usefulness of this design method will be demonstrated with a three-bay four-story building frame so that, on the one hand, the method will reduce the damage as measured by the global damage index under the same earthquake and, on the other hand, will lead to a larger capacity enabling stronger earthquakes to be accom¬odated .

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Finite Element Analysis of Connections between RC and Steel Member under Tensile Loading (인장력을 받는 RC 부재와 철골 부재 접합부의 유한요소해석)

  • 김은주;김승훈;서수연;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.75-82
    • /
    • 2001
  • Finite element analysis using ANSYS program conducted to evaluate the tensile behavior of the connection between reinforced concrete and steel members is presented in this paper. It is assumed that there is a complete bond between head part of the stud and concrete. However, the surface of the column area of stud is separated from the concrete to stop the stress transmission between those. In case of using reinforcement connectors such as C or U type, the interface between concrete and reinforcement is idealized to have strong adhesion. Four concrete-steel specimens which are connected by stud connector or reinforcement connectors are compared and analyzed From the comparison, it was shown that the connection between concrete and steel could be predicted by using the modeling technique used in this paper.

  • PDF

Seismic Performance Evaluation of Moderate Seismically Designed RC Bridge Piers with Confinement Steel Type (중저진 철근 콘크리트 교각의 횡방향 철근 배근 형태에 따른 내진성능 평가)

  • Park, Jong-Hyup;Kim, Hoon;Lee, Jae-Hoon;Chung, Young-Soo;Cho, Dae-Yeon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.194-199
    • /
    • 2001
  • Lap splice in plastic hinge region is inevitable because of due to constructional joint between footing and column. R/C Circular columns with lap-splice in plastic hinge region are widely used in Korean highway bridges. In addition, these columns which constructed before the seismic design code have a number of structural deficiencies. It is, however, believed that there are not many experimental research works for nonlinear behavior of these columns subjected to earthquake motions. The object of this research is to evaluate the seismic performance of existing circular reinforced concrete bridge piers by the Quasi-static test. Existing reinforced concrete bridge piers were moderate seismically designed in accordance with the conventional provisions of Korea Highway Design Specification. This study has been performed to verify the effect of lap spliced longitudinal steel, confinement steel type and confinement steel ratio far the seismic behavior of reinforced concrete bridge piers. Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as displacement ductility, energy absorption, strength degradation etc.

  • PDF

Nonlinear Analysis of High Strength Reinforced Concrete Members Considering the Tension Stiffening Model (인장강성 모델을 고려한 고강도 철근콘크리트 부재의 비선형 해석)

  • 홍창우;윤경구;김경진;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.479-482
    • /
    • 1999
  • The tension stiffening effect, which means the maintaining a part of stiffness after cracking of concrete in tensile, exists at a reinforced concrete member because of the concrete softening and bonding stress between cracks. It is required to consider it for precise analysis and evaluation o structural behavior, due to the possibility of discrepancy between the actual behavior and the analysis without considering the tension stiffening effect. Making and adopting a tension stiffening model is the most simple and effective way for considering it at nonlinear analysis which indicated the estimation from models and experimental results were similar each others. The comparisons on RC beam were, also performed in order to analyzed the influence of concrete strength and steel ratio into the structural behavior. They indicated that the results from analysis estimated quite closely to the test results at low steel ratio, however, overestimated at high steel ratio. The overestimation increase linearly as concrete strength or steel ratio increased.

  • PDF

Theoretical Assessment of Reinforced Steel Fibrous Concrete Beam Equivalent to Conventional RC Beam (일반 RC보와 동등한 강섬유 보강 철근콘크리트 보의 이론적 산정)

  • 이차돈;윤여천
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.195-206
    • /
    • 1997
  • 비선형 layered 유한요소법과 비선형 프로그래밍 기법에 의하여 주어진 기존의 철근콘크리트 보의 휨강도 및 연성을 근사하게 나타낼 수 있는 강섬유고강 철근콘크리트 보(Reinforced Steel Fibrous Concrete Beam : RSFC Beam)의 인장 및 압축철근량, 강섬유의 혼입률 등을 산정하였다. 개발된 모델을 이용하여 콘트리트의 압축강도 및 철근비가 서로 다른 일반 철근콘크리트 보에 있어서 강섬유보강 콘크리트를 사용할 경우, 기존 철근을대체하는 강섬유의 량과 또한 이로 인한 인장 \ulcorner 압축 철근량의 변화량을 조사하였다. 기존 문헌에 나타난 강섬유보강 콘크리트보의 전간강도식을 이용하여 일반 철근콘크리트보와 비교하여 강섬유보강 철근콘크리트 보에서 증가될 수 있는 스터럽의 간격을 산정하였다.

Evaluation of Reinforced Materials and Epoxy Resins for Adhesion Repairing-Reinforced of RC Construction (RC구조물 접착 보수$\cdot$보강용 에폭시수지 및 보강재료의 재료특성 평가)

  • Park Yong-Kyu;Joo Eun-Hi;Lee Gun-Cheol;Byun Hang-Yong;Woo Jong-Wan;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.183-186
    • /
    • 2005
  • This study investigates material properties of epoxy resins and reinforced materials for adhesion repairing-reinforced of RC construction. According to the test. elasticity modulus of mortar indicated 16-26(GPa) and that of concrete was 18-27(GPa). It became decreased as mixture proportion, W/C and fluidity of both mortar and concrete increased In addition the elasticity modulus of epoxy resins exhibited around 45.3-220(GPa), while that of steel plate and Carbon Bar indicated 338(GPa) and 34.1 (GPa), respectively. It is obvious that individual materials had big different value of elasticity modulus. Meanwhile, thermal expansion coefficients of mortar was 10-13 ${\mu}\varepsilon$ /$^{\circ}C$ and that of concrete was 9-11 $\mu \varepsilon$ /$^{\circ}C$ The increase of mixture Voportion and W/C resulted in lower value of thermal expansion coefficients and the increase of flow and slump exhibited slightly higher value. The epoxy resin indicated 41-54 ${\mu}\varepsilon$ /$^{\circ}C$ which is 4-5 times larger value than concrete and steel plate and Carbon Bar was 11.93 ${\mu}\varepsilon$ /$^{\circ}C$ and -1.68 ${\mu}\varepsilon$ /$^{\circ}C$ respectively. Hence, the adhesion strength of the epoxy resins should be considered before it is used in field condition, due to different thermal expansion coefficient of each material.

  • PDF