• Title/Summary/Keyword: steel-free

Search Result 842, Processing Time 0.027 seconds

Wet Etching of Stainless Steel Foil by Aqueous Ferric Chloride Solution (염화제이철 수용액에 의한 스테인레스 강판의 식각에 관한 연구)

  • Lee, Hyung Min;Park, Mooryong;Park, Gwang Ho;Park, Chinho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.211-216
    • /
    • 2012
  • Wet chemical etching of stainless steel foil by aqueous ferric chloride solution was investigated in this study. Effects of various process parameters (e.g. etchant agitation rate, etchant temperature, $Fe^{3+}$ ion concentration, free HCl concentration, specific gravity, etc.) on the etch rate was first studied, and it was found that the etch rate of AK (aluminum-killed) steel, chromium metal and stainless steel (STS430J1L alloy) follows the pseudo-first order reaction equation. When the fatigue ratio of etchant was kept under 16%, sludge was not formed in the solution, and the etched surface showed smooth roughness. The etch rate decreases as Baume of etchant increases, but the effect of free HCl concentration on the etch rate turned out to be minimal. Experimental data were compared with the calculated results from modeled equation, showing very good agreement.

The Characteristics of Cr-Free Coating Hot Dip Galvanized Sheet Steel

  • Kim, Jong-Gi;Moon, Man-Been;Yun, Jeong-Mo
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.24-29
    • /
    • 2011
  • The greatest purpose of chromate treatment is to improve anti-corrosion by stabilizing a metal surface. Because metal surface forms a compound by absorbing oxygen or water in the air by being generally unstable, it is necessary to improve anti-corrosion of the metal by forming the metal surface with a stable film. When considering the economical efficiency and requirements together because the film of the metal surface treated with chromate has good anti-corrosion and the stability also in the air by being compact and strong, Chromate treatment has been used most up to the electronics industry from the auto industry. However, these days, because hexavalent chromium is both a toxic agent to be able to cause cancers and deadly poisonous environmental pollutant, the strong legal controls on its use is being imposed all over the world. Because of this reason, a new anti-corrosion method is being required. Also, by users' various demands, the passivations that have recently been developed require various characteristics such as conductivity, chemical resistance, alkali cleaning resistance as well as anti-corrosion. We could confirm the results such as excellent anti-corrosion compared to chromate, conductivity, chemical resistance and detergent resistance as the result of analysis of various characteristics of the galvannealed sheet steels coated with Cr-Free solution developed in this research.

Effects of Geometrical Shape on the Free Vibration of Laminated Composite Conical Shells (복합적층 원뿔형 쉘의 자유진동에 관한 기하학적 형상의 영향)

  • Son, Byung Jik;Ji, Hyo Seon;Chang, Suk Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.519-527
    • /
    • 2002
  • Shell structures have become critical in the design of pressure vessels, submarine hulls, ship hulls, airplane structures, concrete roofs, containers for liquids, and many other structures. This study presented the feature of the free vibration of anisotropic laminated conical shells according to transverse shear deformation effects. Composite materials are composed of two or more different materials in order to produce desirable properties for structural strength. Since their behavior is very complex, it is almost impossible to solve the analytical solutions. This effects of subtended and vertex angles and other geometric parameters on vibration were investigated in a comprehensive parametric study. Selected vibration mode shapes were illustrated, to enable the physical understanding of vibration of laminated composite conical shells.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

Experimental and numerical investigation of RC sandwich panels with helical springs under free air blast loads

  • Rashad, Mohamed;Wahab, Mostafa M.A.;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.217-230
    • /
    • 2019
  • One of the most important design criteria in underground structure is to design lightweight protective layers to resist significant blast loads. Sandwich blast resistant panels are commonly used to protect underground structures. The front face of the sandwich panel is designed to resist the blast load and the core is designed to mitigate the blast energy from reaching the back panel. The design is to allow the sandwich panel to be repaired efficiently. Hence, the underground structure can be used under repeated blast loads. In this study, a novel sandwich panel, named RC panel - Helical springs- RC panel (RHR) sandwich panel, which consists of normal strength reinforced concrete (RC) panels at the front and the back and steel compression helical springs in the middle, is proposed. In this study, a detailed 3D nonlinear numerical analysis is proposed using the nonlinear finite element software, AUTODYN. The accuracy of the blast load and RHR Sandwich panel modelling are validated using available experimental results. The results show that the proposed finite element model can be used efficiently and effectively to simulate the nonlinear dynamic behaviour of the newly proposed RHR sandwich panels under different ranges of free air blast loads. Detailed parameter study is then conducted using the validated finite element model. The results show that the newly proposed RHR sandwich panel can be used as a reliable and effective lightweight protective layer for underground structures.

Assessment of Ion Leaching and Recycling Potential of Steel Slag Mixed with Clay (점토와 혼합된 제강슬래그의 이온 용출 및 재활용 가능성 평가)

  • Hyeongjoo Kim;Hyeonki Lee;Taegew Ham;Sohee Jeong;Hyeongsoo Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.39-47
    • /
    • 2024
  • In this study, the environmental implications of electric arc furnace steel slag, commonly used in road construction and soil reinforcement, were examined. Experiments were conducted to assess the leaching of heavy metals based on particle size and to investigate ion leaching from specimens with varying mixtures of steel slag and clay. The official waste test revealed no detectable heavy metals in the sample items. However, when subjected to leaching experiments and analyzed using ICP-OES, certain heavy metals were found. The reaction of steel slag with water, facilitated by free CaO within the slag, was identified as the cause of leaching. Results showed that aluminum, exhibiting the highest leaching rate, displayed an inverse relationship with particle size. In mixed soil containing steel slag and clay, higher steel slag content resulted in increased aluminum leaching. Nonetheless, the quantity of leached aluminum was notably lower in mixed soil compared to pure steel slag. Furthermore, leaching of other heavy metals remained within acceptable limits. These findings suggest that recycling mixed soil of steel slag and clay for road construction or soil stabilization presents reduced environmental risks compared to using steel slag alone. Utilizing such mixtures could offer an environmentally sustainable and safe alternative.

The Effect of Temperature on the Corrosion of Mild Steel in H3PO4 Containing Halides and Sulfate Ions

  • Chandrasekaran, V.;Kannan, K.;Natesan, M.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • The corrosion behaviour of mild steel in phosphoric acid solution in the presence and absence of pollutants viz. Chloride, Fluoride and Sulfate ions at 302K-333K was studied using mass loss and potentiostatic polarization methods. The addition of chloride and sulfate ions inhibits the mild steel corrosion in phosphoric acid while fluoride ions stimulate it. The effect of temperature on the corrosion behaviour of mild steel indicated that inhibition of chloride and sulfate ions decreased with increasing temperature. The adsorption of these ions (Chloride and sulfate) on the mild steel surface in acid has been found to obey Langmuir adsorption isotherm. The values of activation energy (Ea) and free energy of adsorption ($\Delta$) indicated physical adsorption of these ions (chloride and sulfate) on the mild steel surface. The plot of $logW_{f}$ against time (days) at 302K gives a straight line, which suggested that it obeys first order kinetics and also calculate the rate constant k and half-life time $t_{1/2}$.

Expansion behavior of low-strength steel slag mortar during high-temperature catalysis

  • Kuo, Wen-Ten;Shu, Chun-Ya
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.261-274
    • /
    • 2015
  • This study established the standard recommended values and expansion fracture threshold values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by high-temperature ($100^{\circ}C$) curing for 96 h and autoclave expansion. The results showed that the effects of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of peripheral hydration products from the calcium hydroxide crystals, leading to a local stress concentration and, eventually, deformation and cracking.

Free vibration response of multi-layered plates with trigonometrically distributed porosity based on the higher-order shear deformation theory

  • Ferruh Turan
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • This paper focuses on trigonometric porosity distribution to analyze its effect on the free vibration frequencies of porous orthotropic multi-layered composite plates. Three types of porosity distributions are considered. The governing equations of the free vibration response of porous orthotropic multi-layered composite plates are derived from the Hamilton's principle using higher-order shear deformation theory. The free vibration frequency relation of the problem is obtained by performing Galerkin's method. After the validation process of the relation under the available literature, a few parametric analyses are performed to observe the influence of shear deformation, porosity distribution, orthotropy, layer sequence, and different geometric properties on the frequencies.