• Title/Summary/Keyword: steel-free

Search Result 842, Processing Time 0.031 seconds

Study on bond behavior of steel reinforced high strength concrete after high temperatures

  • Chen, Zongping;Zhou, Ji;Wang, Xinyue
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.113-125
    • /
    • 2020
  • This paper presents experimental results on bond-slip behavior of steel reinforced high-strength concrete (SRHC) after exposure to elevated temperatures. Three parameters were considered in this test: (a) high temperatures (i.e., 20℃, 200℃, 400℃, 600℃, 800℃); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 SRHC specimens subjected to high temperatures were designed for push out test. The load-slip curves at the loading end and free end were obtained, the influence of various variation parameters on the ultimate bond strength and residual bond strength was analyzed, in addition, the influence of elevated temperatures on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at loading ends and free ends are similar. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the temperature increasing. The bond strength is proportional to the concrete strength, and the bond strength is proportional to the anchoring length when the temperature is low, while the opposite situation occurs when the temperature is high. What's more, the bond damage of specimens with lower temperature develops earlier and faster than the specimens with higher temperature. From these experimental findings, the bond-slip constitutive formula of SRHC subjected to elevated temperatures is proposed, which fills well with test data.

Influence of Binder Type on the Chloride Threshold Level for Steel Corrosion in Concrete

  • Moon Han-Young;Ann Ki-Yong;Jung Ho-Seop;Shin Dong-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.663-670
    • /
    • 2005
  • The present study concerns the influence of binder type on the chloride-induced corrosion being accompanied by the chloride threshold level (CTL), chloride transport and as their results the corrosion-free lift. Two levels of cement content, $30\%$ PFA and $65\%$ GGBS concrete were employed. It was found that the most dominant factor to the CTL is the entrapped air void content at the steel-concrete interface, irrespective of the chloride binding capacity, binder type and acid neutralisation capacity of cement matrix. The CTL for lower interfacial air void contents was significantly increased up to $1.52\%$ by weight of cement, whereas a same mix produced $0.35\%$ for a higher level of voids. Because of a remarkable reduction in the diffusion fur GGBS concrete, its time to corrosion ranges from 255 to 1,250 days, while the corrosion-free life for control varies from 20 to 199 days sand for $30\%$ PFA concrete from 200 to 331 days.

Surface Characteristics of the Galvannealed Coating in Interstitial-Free High Strengthen Steels Containing Si and Mn (Si, Mn함유 IF 고강도 합금화 용융아연도금강판의 표면특성)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • Surface-void defects observed on the galvannealed(GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.

Enhancing the Mechanical Properties of Z-Spring by Implementing CF&GF Hybrid Prepreg Lamination Patterns (CF&GF Hybrid Prepreg 적층 패턴에 따른 Z-Spring의 기계적 물성 향상에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Kim, Young-Keun;Kim, Hong-Gun;Kwac, Lee-Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.53-59
    • /
    • 2021
  • In vibration-free vehicles such as limousine buses, the vibration is minimized by installing an air spring instead of the leaf spring used in the existing freight cars to prevent the damage to the loaded cargo from shocks generated during movement. In the existing vehicles, steel structures support the air spring system. This study was aimed at replacing the steel structures used in the Z-spring by carbon fiber and glass fiber reinforced plastics. In addition, the mechanical properties (elastic modulus, tensile strength, and shear strength) of carbon fiber and glass fiber prepreg were derived using specimens molded with the corresponding prepreg. The final goal was to develop a material lighter than the conventional steel material but with enhanced mechanical properties. Although the CF prepreg exhibited excellent mechanical properties, the production cost was extremely high. To overcome this limitation, hybrid composites with GF prepreg were examined, which are expected to be promising future materials.

The effect of Na2MoO4 addition on the formation and corrosion resistance of Cr-electroplated layer of low carbon steel (저탄소강의 크롬도금층 형성 및 내식성에 미치는 Na2MoO4 첨가의 영향)

  • Bae, Ki Chang;Kim, Kiwook;Kim, Juho;Lee, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.1
    • /
    • pp.18-23
    • /
    • 2022
  • Presence of cracks in electrodeposited hard chromium layer, which provide a path of corrosive media to steel substrate, is a serious issue in metal finishing with chromium electroplating. In this study, we added sodium molybdate in an electrolyte for chromium electroplating bath. 130g/L of sodium molybdate in Sargent bath for chromium electroplating causes a codepostion of molybdenum with chromium in a rage of 0.61 ~ 3.14 wt.%. The co-deposited molybdenum enhances the crystallinity of chromium layer, thus the hardness is slightly decreases by the addition of molybdate in electrolyte. However, due to the co-deposition of molybdenum, a crack-free chromium layer could be electrodeposited. Such crack-free chromium layer shows a significantly improved corrosion resistance.

Damping characteristics of CFRP strengthened castellated beams

  • Cyril Thomas Antony Raj;Jyothis Paul Elanhikuzhy;Baskar Kaliyamoorthy
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.685-699
    • /
    • 2023
  • In recent years, Carbon Fibre Reinforced Plastic (CFRP) strengthening is found to be one of the best methods to strengthen steel structures. The fibrous bond can also influence the vibration characteristics of the strengthened element apart from its static strength enhancement property. The main objective of this study is to understand the influence of CFRP strengthening on the dynamic Behaviour of Thin-Webbed Castellated Beams (TWCBs). A detailed experimental investigation was carried out on five sets of beams with varying parameters such as domination of shear (Shear Dominant, Moment Dominant and Moment and Shear Dominant), sectional classification (Plastic and Semi-compact) and perforation geometries (ho/dwratio 0.65 and e/ho ratio 0.3). Free vibration analysis was carried out by exciting the simply supported TWCBs with an impact force generated by a ball dropped from a specific height. Logarithmic decrement method was used to obtain the damping ratio and natural frequencies of vibration were found by Fast Fourier Transform (FFT). Natural frequency showed an increase in a range of 10.5 - 55% for the different sets of castellated beams. An increase of 62.30% was noted in the damping ratio of TWCBs after strengthening which is an indication of improvement in the vibration characteristics of the beam.

A Study on the Vibration Characteristics of Steel and Plain Weave Composite Cylindrical Shells Combined with Internal Plate Structures (내부판 구조물이 결합된 강 및 평직 복합재료 원통셸의 구조진동 특성 연구)

  • 이영신;최명환
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.149-162
    • /
    • 1999
  • A method for the analysis of free vibrations of steel and plain weave composite cylindrical shells with a longitudinal, interior rectangular plate is developed by using the receptance method. This method is based on the ratio of a deflection (or slope) response to a harmonic force(or moment) at the joint. In this study, after getting the free vibration characteristics of the simply supported plate and shell, the frequency equation of the combined system is obtained by considering the continuity condition at the joint between the plate and the shell. The numerical results are compared with published results and experiment results in order to show the validate of the formulation, and shown that the analytical results agreed with those from other methods. The effects of the location and the thickness of the plate on the natural frequencies are also investigated.

  • PDF

Recent Trend in Hot Rolling Technology of Steels (강판 열간압연의 기술개발 동향)

  • 신수철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.3-9
    • /
    • 1999
  • The recent technical trend in hot rolling of steel can be described as process and product technologies which have been progressed with modern mill equipment and computers. Precise gauge and width control can be achieved by up-to-date control methods such as AGC and AWC systems. Roll benders and various shape control systems enabled high quality flatness and crown control. Mills can produce higher tensile materials by new process based on process metallurgy. The use of high speed steel rolls and on line roll grinders make the schedule free rolling easier which results in cost saving. Process itself goes toward continuous and simple flow type which has lower operation. Endless rolling and strip casting are examples of the trend. Materials with higher tensile strength and various functions have been developed in last years to meet the customer's needs and this trend will continue.

  • PDF

Comparative Study on Disinfection Efficiency of Chlorine and Chloramine in the Distribution Systems (배·급수계통에서 유리염소와 클로라민의 소독효과에 관한 비교연구)

  • Choi, Yong-Il;Nam, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.82-88
    • /
    • 1999
  • This study was to evaluate disinfection efficiency of chlorine and chloramine as secondary disinfectants in the distribution systems. Indicator organism, HPC in the suspended and attached were measured for copper, galvanized steel, PVC, and carbon steel pipes. For suspended microorganism, the PVC pipe was markedly dense among the assessed pipe materials. The attached microorganism was markedly equivalent roughness of pipe materials. In copper and galvanized pipes, chloramine was more effective that free chlorine to disinfect suspended microorganism in the contact time of 2 hours. The contact time for the 99% inactivation of suspended microorganism by chloramine was longer than that of free chlorine. Regardless of pipe materials, chloramine was effective on both disinfection efficiency and 99% inactivation time for attached microorganism. In conclusion, chloramine which is good disinfectant for long contact time was recommended as secondary disinfectant in distribution system.

  • PDF

Numerical Study on Ground Vibration Reduction and Fragmentation in a Controlled Blasting Utilizing Directional U Shape Charge Holder (U형 장약홀더를 이용한 발파공법에서 지반진동 저감특성 및 파괴효율에 관한 수치해석적 연구)

  • Kim, Hyon-Soo;Baek, Beom-Hyun;Oh, Se-Wook;Han, Dong-Hun;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • It is necessary to minimize ground vibration and noise due to blasting work in urban environment. The blast induced ground vibration and noise are generally generated by a portion of detonation energy, where most of the energy is utilized for rock breakage and movement of rock mass. Recently a blast method utilizing U-shaped steel charge holder was suggested to reduce the ground vibration without decreasing destructive power toward the free surface. In this study, single hole blasting utilizing U-shaped steel charge holder were simulated and the stress waves caused by the detonation of explosives were monitored using AUTODYN software. In order to examine the fragmentation efficiency of the U-shaped steel charge holder, one free face blasting models which adapt the blast induced stress waves were simulated by dynamic fracture process analysis (DFPA) code. In addition, the general blasting models were also simulated to investigate the fragmentation effectiveness of the U-shaped steel charge holder in rock blasting.