• Title/Summary/Keyword: steel-concrete structure

Search Result 1,122, Processing Time 0.026 seconds

Application of Steel-tubed Concrete Structures in High-rise Buildings

  • Zhou, Xuhong;Liu, Jiepeng
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.161-167
    • /
    • 2019
  • Making full use of material strength, maintaining sufficient ductility of structural components, and ensuring simple and robust connections are crucial to the development of steel-concrete composite structures. The steel-tubed concrete structure uses thin-walled steel tube to provide confinement, so that the strength and ductility of the concrete core are improved. Meanwhile, the thin-walled steel tube is terminated at the beam-column joint to avoid the local buckling problem and simplify the connections between steel tube and RC members. A brief overview of the development of steel-tubed concrete structures is presented. Through the discussion on the structural behavior of steel-tubed concrete and the introduction of typical practical projects, the prospects for future research are highlighted.

Analytical Study of Flexural Behavior on Steel Fiber Reinforced Concrete Structure (SFRC구조물의 휨거동에 관한 해석적 연구)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Various characters of the concrete are greatly improved as the effect of the steel fiber. As the improvement effect of the steel fiber, the increment in flexural strength, shear strength, toughness, and impact strength are remarkable, and tenacious concrete is obtained. This paper presents model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus and tensile strength were performed with self-made cylindrical specimens of variable aspect ratios. This paper presents an analytical study on the behavior of a beam specimen with steel fiber reinforced concrete(SFRC). The effect of the SFRC on the crack pattern, failure mode and the flexural behavior of the structure were investigated. The analysis model based on the nonlinear layered finite element method was successfully able to find the necessary amount of steel fibers, tensile steels and beam section which can best approximate flexural strength and ductility of a given conventionally reinforced concrete beam.

  • PDF

An Experimental Study on the Mock-up test take advantage of the High Strength Concrete (초고강도 콘크리트를 이용한 CFT실물대 실험)

  • Son Young Jun;Kim Jae Eun;Yang Dong Il;Jung Keun Ho;Lim Nam Gi;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.458-461
    • /
    • 2004
  • The column for Steel Framed Reinforced Concrete Structure (SFRCS) and the column for Reinforced Concrete Structure (RCS) could be the most common building structure. The increasing of the need for massive space hasaffected the size of building components for supporting the massive structure. However, the changing of components size makes inefficient space of building. Hence. to meet the need for acquiring efficient space comparing the budget and cost the new structure method, Concrete Filled Tube Steel (CFT), was developed. CFT is the structure for which steel tube instead of other materials such as wood for holding concrete is used. The most benefit of this one is to help in reducing the size of the building components and local buckling because of tube steel holding concrete. For this reason, this research will examine the probability of applying CFT on construction sites by using the concrete $(800kg/cm^2)$ especially for CFT through the data from the real size mock-up.

  • PDF

Experimental and analytical investigation of high-strength concrete-filled steel tube square columns subjected to flexural loading

  • Chung, Kyung-Soo;Kim, Jin-Ho;Yoo, Jung-Han
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.133-153
    • /
    • 2013
  • The concrete-filled steel tube (CFT) columns have several benefits of high load-bearing capacity, inherent ductility and toughness because of the confinement effect of the steel tube on concrete and the restraining effect of the concrete on local buckling of steel tube. However, the experimental research into the behavior of square CFT columns consisting of high-strength steel and high-strength concrete is limited. Six full scale CFT specimens were tested under flexural moment. The CFT columns consisted of high-strength steel tubes ($f_y$ = 325 MPa, 555 MPa, 900 MPa) and high-strength concrete ($f_{ck}$ = 80 MPa and 120 MPa). The ultimate capacity of high strength square CFT columns was compared with AISC-LRFD design code. Also, this study was focused on investigating the effect of high-strength materials on the structural behavior and the mathematical models of the steel tube and concrete. Nonlinear fiber element analyses were conducted based on the material model considering the cyclic bending behavior of high-strength CFT members. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.

Structural Behavior of Composite Slab toNuclear Power Structure under Reversed Cyclic Loads (반복하중을 받는 원자력 구조물 합성 바닥판의 구조적 거동)

  • 김정혁;김강식;김우범;정하선;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.629-634
    • /
    • 2000
  • Comparing with single structure constructed with reinforced concrete or steel, composite structures have a great advantage. However, in case of nuclear power structure, the application of a conventional single structure (reinforced concrete or steel structure) inflicts a heavy loss on a economical and constructive efficiency. But, the application of composite slab to nuclear power structure could compensate these deficiency. Therefore, in this study, the structural behavior of composite slab in nuclear power structure is observed to assure economical and constructive efficiency.

  • PDF

A Study on the Bond Strength of Coated Rebar in Concrete (콘크리트중 코팅철근의 부착응력에 대한 기초적 연구)

  • 문한영;김성수;류재석;김성섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.127-132
    • /
    • 1996
  • Recently in the country a corrosion of steel is accelerated due to using of sea sand including salts, and critical problem on the durability of concrete structure is occured. Thus a control of steel corrosion is very important in the stability of structure. Coated steel is in use with a method of steps of steel corrosion in U.S,A. Japan etc, and as well in domestic case the manufactured coating steel of three types is on the market. Those are Epoxy coated steel, Zinc-strength, concrete specimen size, bar diameter, which can affect bond characteristics between steel and concrete in order to know their relative bond characteristics.

  • PDF

An Experimental Study on Flexural Properties of SC(Steel Plate Concrete) Beam Structure with Reinforced Concrete Joint (철근 콘크리트 구조와 강판 콘크리트 구조(Steel Plate Concrete) 이질접합부를 가진 보의 휨 하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hahm, Kyung-Won;Park, Dong-Soo;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.455-463
    • /
    • 2010
  • This paper describes the experimental study on the mechanical characteristics of a steel plate-reinforced concrete joint. As an alternative reinforced concrete structure, the SC modular construction method is widely used and studied in the field ofindustrial facility field. However, the structure characteristics of RC and SC joint are not yet studied completely. In this paper, the beam-type construction joint of RC and SC walls was made to simulate the application of SC module to the large RC structure. Also, an out-of-plane loading was applied to the test specimen in order to evaluate flexural strength and structural properties of the beam-type RC-SC joint.

A Study about the Optical Mixing in accordance with High-Strength Steel and Concrete Strength Levels (고강도 철근과 콘크리트 강도수준에 따른 최적조합에 관한 연구)

  • Choi, Pan-Gil;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.111-118
    • /
    • 2006
  • The reinforced concrete structure is one of the most popular structures in real construction. Concrete has been strengtened rapidly due to the development of new material and construction technology. But as the concrete has been getting stronger, the brittleness of material has increased and the better ductility has been required. So, the study for strengthening stiffener has been urgently needed. As we said above, it is expected that the use of high strength steel and concrete will be increased. However, The experimental data is not enough for solving problems of the use of high strengthened steel and concrete. In this research, we analyzed 45 combinations of the strength levels of concrete, the thickness of material and the steel strength with regard to simple Reinforced Concrete SLAB Beam bridge. The program MIDAS CIVIL was used to find the optimal combination. As a result, it was found that strength ratio per unit section is in inverse proportion to the strength of material and that the strengths of steel are respectively 400 MPa for low strengthened concrete and 300 MPa for high strengthened concrete. For economic aspect and usability, the effect of high strength steel is not as high as we expected it would be.

  • PDF

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Thermal Response of Concrete in Steel-Concrete Composite Structure (복합구조 적용에 따른 콘크리트 열 응답)

  • Son, Young-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.185-191
    • /
    • 2003
  • This paper presents the thermal problems of steel-concrete composite structure and the basic references in placing concrete into the structure. Based on the analytical investigation, application of the composite structure has the effect of highly decreasing the temperature difference between the center section and the surface section of the structure, though its application has little influence on the decrement of the maximum temperature under the same using material and placing temperature. Meanwhile, its application causes the section decrement of a concrete structure, and in the section which the decrement ratio is relatively large, the restraint action by a old concrete structure takes place highly tensile stresses over a tensile strength. And, the stress is concentrated on sharp edges of the steel-concrete boundary. Both restraint action and stress concentration considerably decrease the reduction effect of the temperature difference. Therefore, the prediction of thermal response and the reasonable steps are required through the simulation considering the factors and the sections related to those problems.