• Title/Summary/Keyword: steel tower

Search Result 224, Processing Time 0.023 seconds

Study on the Life Cycle Management System of the Marine Transmission Tower Structures (해상철탑구조물의 수명관리방안 연구)

  • Pang, Gi-Sung;Song, Young-Chul;Yoon, Deok-Joong;Kim, Do-Gyeum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.281-284
    • /
    • 2006
  • The marine Transmission tower infrastructure erected in the SI-HWA lake is deteriorated and damaged by the various environment effect, and then, there is a possibility of going bad in the safety. The appropriate maintenance to ensure the security of the structure during life cycle is necessary. Specially the Jacket or the steel file foundation in the sea is apt to be corroded quickly. In this research, to establish life management system of 345kV Yonghung marine transmission tower structure, the actual durability research facility which can obtain the actual proof data is constructed. the maintenance guideline and procedure of the structure are established. Hereafter, there is a plan which will advance the research against the composition of the life prediction model, which is based on the data acquired from the actual durability research facility.

  • PDF

Joint stress based deflection limits for transmission line towers

  • Gayathri, B.;Ramalingam, Raghavan
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2018
  • Experimental investigations have revealed significant mismatches between analytical estimates and experimentally measured deflections of transmission towers. These are attributed to bolt slip and joint flexibility. This study focuses on effects of joint flexibility on tower deflections and proposes criterions for permissible deflection limits based on the stresses in joints. The objective has been framed given that guidelines are not available in the codes of practices for transmission towers with regard to the permissible limits of deflection. The analysis procedure is geometric and material nonlinear with consideration of joint flexibility in the form of extension or contraction of the cover plates. The deflections due to bolt slip are included in the study by scaling up the deflections obtained from analysis by a factor. Using the results of the analysis, deflection limits for the towers are proposed by limiting the stresses in the joints. The obtained limits are then applied to a new full scale tower to demonstrate the application of the current study.

Ultimate Flexural Strength of Cylindrical Steel Shell for Wind Tower (풍력발전 타워용 원형단면 강재 쉘의 극한휨강도)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.109-118
    • /
    • 2015
  • Ultimate flexural buckling strength of cylindrical steel shells for the wind turbine tower structure was investigated by applying the geometrically and materially nonlinear finite element method. The effects of initial imperfection, radius to thickness ratio, and type of steel on the ultimate flexural strength of cylindrical shell were analyzed. The flexural strengths of cylindrical shells obtained by FEA were compared with design flexural strengths specified in Eurocode 3 and AISI. The shell buckling modes recommended in DNV-RP-C202 and the out-of-roundness tolerance and welding induced imperfections specified in Eurocode 3 were used in the nonlinear FE analysis as initial geometrical imperfections. The radius to thickness ratios of cylindrical shell in the range of 60 to 210 were considered and shells are assumed to be made of SM520 or HSB800 steel.

Structural Design and Construction of High-rise Building to Feature the High-performance Oil Dampers for Vibration Control - Hibiya Mitsui Tower -

  • Kato, Takashi;Hara, Kenji;Tanaka, Hiroyuki
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.229-234
    • /
    • 2019
  • This report introduces the structural design of Hibiya Mitsui Tower built in Tokyo Midtown Hibiya. The upper part of this tower is used for offices and the lower portion is for commercial facilities and a cinema complex which need the large open spaces. The 192m-high building has 35 floors above ground and 4 below ground. The structure is a steel frame using CFT columns to feature the high-performance oil dampers and the buckling restrained braces for vibration control. First, an outline of the structural design of this building is presented. Second, we introduce the transfer frame adopted to realize the large open spaces in the lower part, and the long column supporting the corner part of the high-rise building to avoid making a shade on the adjacent Hibiya Park, which are the feature of this building. Finally, we present an outline of the latest highly efficient semi-active oil dampers adopted in this building, and the vibration responses of this tower.

Effect of Applied Current Density on the Corrosion Damage of Steel with Accelerated Electrochemical Test (전기화학적 가속 부식 평가법에서 강재의 부식 손상에 미치는 인가전류밀도의 영향)

  • Lee, Jung-Hyung;Park, Il-Cho;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.423-430
    • /
    • 2016
  • In this study, we investigated the corrosion damage characteristics of steel for offshore wind turbine tower substructure using an accelerated electrochemical test. The galvanostatic corrosion test method was employed with a conventional 3 electrode cell in natural sea water, and the steel specimen was served as a working electrode to induce corrosion in an accelerated manner. Surface and cross-sectional image of the damaged area were obtained by optical microscope and scanning electron microscope. The weight of the specimens was measured to determine the gravimetric change before and after corrosion test. The result revealed that the steel tended to suffer uniform corrosion rather than localized corrosion due to active dissolution reaction under the constant current regime. With increasing galvanostatic current density, the damage depth and surface roughness of surface was increased, showing approximately 25 times difference in damage depth between the lowest current density ($1mA/cm^2$) and the highest current density ($200mA/cm^2$). The gravimetric observation showed that the weight loss was proportionally increased with increment of current density that has 75 times different according by experimental conditions. Consequently, uniform corrosion of the steel specimen was conveniently induced by the electrochemically accelerated corrosion technique, and it was possible to control the extent of the corrosion damage by varying the current density.

Alternative Design of Mega Structural Members of a Super-tall Building using 800MPa Grade High-performance Steel Plate (800MPa급 고성능 강재 적용한 초고층 메가 부재 대안설계)

  • Cho, So Hoon;Kim, Do Hwan;Kim, Jin Won;Lee, Seung Eun;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.299-309
    • /
    • 2014
  • HSA800 is a new high strength steel (HSS) plate for building structures developed by POSCO and RIST in 2011. It has upper and lower bounds for yield ($F_y$) and tensile ($F_u$) strength as of 650-770MPa and 800-950MPa, respectively, with yield ratio ($F_y/F_u$) limit as of 0.85 which make steel quality more reliable and enhance the seismic resistance of structures. As made by TMCP, it has a good weldability without increasing carbon percentage. The objective of this study is to provide alternative design of mega-structural members of the Lotte World Tower (555m, 123 story), a first super-tall building in Korea, using HSS considering structural safety, constructability, and cost-effectiveness. Steel outrigger trusses, belt-trusses and steel exterior columns were selected and analyzed to evaluate the structural performance between original and alternative designs using HSS. The results show that HSS can be applied to the members which do not affect lateral stiffness of a building and, in this study, approximately 1100tons of steel were saved. It implies that HSS can save overall construction costs - manufacturing, delivery, and erection costs - by reducing mega structural member size. HSA800 was very first applied to the Lotte World Tower based on the results of this study.

The Emergence of the Diagrid - It's All About the Node

  • Boake, Terri Meyer
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.293-304
    • /
    • 2016
  • The diagrid structural system for constructing tall buildings is a recent invention. Debuting in 2004 with the construction of the Swiss Re Tower in London, this aesthetically driven structural system has centered the perfecting of its technology on the development of the nodes that form its innovative deviation from standard steel tall framing methods. The paper examines variations in node design, understanding the linked dependence the modularity and the choice to expose the steel in the building, as well as on advances in digital modelling that allow an increasingly seamless line of communication from the engineering design through to the actual fabrication of the nodes. This advanced design and fabrication technology will be seen to have resulted in the expanded use of the technical term "node" to inform the design and construction of a range of other applications in the structuring of tall buildings, including the use of steel castings.

Behavior of impact toughness in the HAZ of high strength steel tubes for power transmission steel tower (송전 강관 철탑 용접 열영향부의 인성 거동특성에 관한 연구)

  • Min, Kyoung-O;Park, Jong-Won;Lee, Chang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.455-459
    • /
    • 1999
  • 용접열영향부는 최고 도달온도로부터의 거리에 따른 온도구배 변화와 급격한 열 사이 클 때문에 조직 및 물성치의 변화가 예상되는 영역이므로 인성저하등 취성이 잠재적으로 내포된 지역임을 쉽게 예상할 수 있다. 따라서 송전 철탑용 STKT 590 용접열영향부에서의 상변태 거동과 미세조직의 변화에 따른 기계적 특성을 파악하여 용접부의 안전성 확보를 위해 용접열영향부(HAZ)의 상변태거동과 미시파괴기구를 연구하고 개선안을 도출할 필요가 있다.

  • PDF

Reliability analysis of steel cable-stayed bridges including soil-pile interaction

  • Cheng, Jin;Liu, Xiao-luan
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.109-122
    • /
    • 2012
  • An efficient and accurate algorithm is proposed to evaluate the reliability of cable-stayed bridges accounting for soil-pile interaction. The proposed algorithm integrates the finite-element method and the response surface method. The finite-element method is used to model the cable-stayed bridge including soil-pile interaction. The reliability index is evaluated based on the response surface method. Uncertainties in the superstructure, the substructure and load parameters are incorporated in the proposed algorithm. A long span steel cable-stayed bridge with a main span length of 1088 m built in China is considered as an illustrative example. The reliability of the bridge is evaluated for the strength and serviceability performance functions. Results of the study show that when strength limit states for both girder and tower are considered, soil-pile interaction has significant effects on the reliability of steel cable-stayed bridges. Further, a detailed sensitivity study shows that the modulus of subgrade reaction is the most important soil-pile interaction-related parameter influencing the reliability of steel cable-stayed bridges.