• Title/Summary/Keyword: steel support

Search Result 656, Processing Time 0.027 seconds

Hybrid machine learning with HHO method for estimating ultimate shear strength of both rectangular and circular RC columns

  • Quang-Viet Vu;Van-Thanh Pham;Dai-Nhan Le;Zhengyi Kong;George Papazafeiropoulos;Viet-Ngoc Pham
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.145-163
    • /
    • 2024
  • This paper presents six novel hybrid machine learning (ML) models that combine support vector machines (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with the Harris Hawks Optimization (HHO) algorithm. These models, namely HHO-SVM, HHO-DT, HHO-RF, HHO-GB, HHO-XGB, and HHO-CGB, are designed to predict the ultimate strength of both rectangular and circular reinforced concrete (RC) columns. The prediction models are established using a comprehensive database consisting of 325 experimental data for rectangular columns and 172 experimental data for circular columns. The ML model hyperparameters are optimized through a combination of cross-validation technique and the HHO. The performance of the hybrid ML models is evaluated and compared using various metrics, ultimately identifying the HHO-CGB model as the top-performing model for predicting the ultimate shear strength of both rectangular and circular RC columns. The mean R-value and mean a20-index are relatively high, reaching 0.991 and 0.959, respectively, while the mean absolute error and root mean square error are low (10.302 kN and 27.954 kN, respectively). Another comparison is conducted with four existing formulas to further validate the efficiency of the proposed HHO-CGB model. The Shapely Additive Explanations method is applied to analyze the contribution of each variable to the output within the HHO-CGB model, providing insights into the local and global influence of variables. The analysis reveals that the depth of the column, length of the column, and axial loading exert the most significant influence on the ultimate shear strength of RC columns. A user-friendly graphical interface tool is then developed based on the HHO-CGB to facilitate practical and cost-effective usage.

Negative Support Reactions of the Single Span Twin-Steel Box Girder Curved Bridges with Skew Angles (단경간 2련 강박스 거더 곡선교의 사각에 따른 부반력 특성)

  • Park, Chang Min;Lee, Hyung Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.34-43
    • /
    • 2012
  • The behaviors of the curved bridges which has been constructed in the RAMP or Interchange are very complicate and different than orthogonal bridges according to the variations of radius of curvature, skew angle and spacing of shoes. Occasionally, the camber of girder and negative reactions can be occurred due to bending and torsional moment. In this study, the effects on the negative reaction in the curved bridge were investigated on the basis of design variables such as radius of curvature, skew angle, and spacing of shoes. For this study, the twin-steel box girder curved bridge with single span which is applicable for the RAMP bridges with span length(L) of 50.0m and width of 9.0m was chosen and the structural analysis to calculate the reactions was conducted using 3-dimensional equivalent grillage system. The value of negative reaction in curved bridges depends on the plan structures of bridges, the formations of structural systems, and the boundary conditions of bearing, so, radius of curvature, skew angle, and spacing of shoes among of design variables were chosen as the parameter and the load combination according to the design standard were considered. According to the results of numerical analysis, the negative reaction in curved bridge increased with an decrease of radius of curvature, skew angle, and spacing of shoes, respectively. Also, in case of skew angle of $60^{\circ}$ the negative reaction has been always occurred without regard to ${\theta}/B$, and in case of skew angle of $75^{\circ}$ the negative reaction hasn't been occurred in ${\theta}/B$ below 0.27 with the radius of curvature of 180m and in ${\theta}/B$ below 0.32 with the radius of curvature of 250m, and in case of skew angle of $90^{\circ}$ the negative reaction hasn't been occurred in the radius of curvature over 180m and in ${\theta}/B$ below 0.38 with the radius of curvature of 130m, The results from this study indicated that occurrence of negative reaction was related to design variables such as radius of curvature, skew angle, and spacing of shoes, and the problems with the stability including negative reaction will be expected to be solved as taken into consideration of the proper combinations of design variables in design of curved bridge.

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method (EEMD법을 이용한 저속 선회베어링 상태감시)

  • Caesarendra, W.;Park, J.H.;Kosasih, P.B.;Choi, B.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-143
    • /
    • 2013
  • Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it became necessary for a proper maintenance schedule that replaces the slewing bearings installed in massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is still the primary technique used for dealing with low-speed bearing cases. Few studies employed vibration analysis because the signal generated as a result of the impact between the rolling element and the natural defect spots at low rotational speeds is generally weak and sometimes buried in noise and other interference frequencies. In order to increase the impact energy, some researchers generate artificial defects with a predetermined length, width, and depth of crack on the inner or outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean industrial company. In this study, EEMD is used to support and clarify the results of the fast Fourier transform(FFT) in identifying bearing fault frequencies.

Surface characteristics and biocompatibility of bioinert nitrides ion plated titanium implant (생불활성 질화물 이온도금된 티타늄 임프란트의 표면특성 및 생체적합성)

  • Chang, Kap-Sung;Kim, Heung-Joong;Park, Joo-Cheol;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.209-231
    • /
    • 1999
  • Even though titanium(Ti) and its alloys are the most used dental implant materials, there are some problems that Ti wears easily and interferes normal osteogenesis due to the metal ions. Ti coated with bioactive ceramics such as hydroxyapatite has also such problems as the exfoliation or resorption of the coated layer, Recent studies on implant materials have been proceeding to improve physical properties of the implant substrate and biocompatibility of the implant surfaces. The purpose of the present study was to examine the physical property and bone tissue compatibility of bioinert nitrides ion plated Ti, Button type specimens(14mm in diameter, 2.32rrun in height) for the abrasion test and cytotoxicity test and thread type implants(3.75mm in diameter, 6mm in length) for the animal experiments were made from Ti(grade 2) and 316LVM stainless steel. Ti specimens were ion plated with TiN, ZrN by the low temperature arc vapor deposition, and the depth profile of the TiN/Ti, ZrN/Ti ion plated surface was examined by Auger Electron Spectroscopy. Three kind of button type specimens .of TiN/Ti, ZrN/Ti and Ti were used for abrasion test, and HEPAlClC7 cells and CCD cells were cultivated for 4 days with the specimens for cytotoxicity test. Thread type implants of TiN/Ti, ZrN/Ti, Ti, 316LVM were implanted on the femur of 6 adult dogs weighing 10kg-13kg. Two dogs were sacrified for histological examination after 45 days and 90 days, and four dogs were sacrified for the removal torque test of the implant') after 90 days. The removal torque force was measured by Autograph (Shimadzu Co., AGS-1000D series, Japan). Abrasion resistance of TiN/Ti was the highest, and that of ZrN/Ti and Ti were followed. The bioinert nitride ion plated Ti had much better abrasion resistance, compared with Ti, In the cytotoxicity test, the number of both cells were increased in all specimens, and there were no significant difference in cytotoxic reaction among all groups (p>0.1), In histological examination, 316LVM showed the soft tissue engagement in interface between the implant and bone, but the other materials after 45 days noted immature new bone formation in the medullary portion along the implant surface, and those after 90 days showed implant support by new bone formation in both the cortical and the medullary portion, The removal torque force of Tilv/Ti showed significantly higher than that of Ti(p(O,05). The difference in removal torque force between TiN/Ti and ZrN/Ti was not significant(p>0.05), and that of 316LVM was lowest among all groups(p<0.05). These results suggest that bioinert nitrides ion plated Ti can resolve the existing problems of Ti and bioactive ceramics, and it may be clinically applicable to human.

  • PDF

A Study on the Distribution Characteristics of Terpene at the Main Trails of Mt. Mudeung (무등산 주요 탐방로에서 테르펜 분포특성 연구)

  • Lee, Dae-Haeng;Kim, Min-Hee;Park, Ok-Hyun;Park, Kang-Soo;An, Sang-Su;Seo, Hee-Jeong;Jin, Seung-Hyun;Jeong, Won-Sam;Kang, Yeong-Ju;An, Ki-Wan;Kim, Eun-Sun
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.211-222
    • /
    • 2013
  • Objectives: A great number of people visit forests for their bountiful healing factors. We investigated the quantity of terpene and analyzed the correlations with meteorological and environmental factors at Mt. Mudeung in order to support public health. Methods: The terpene amounts were investigated along 11 main trails using stainless steel tube packed by Tenax TA (150 mg) and Carbopack B (130 mg) during March to November 2012. Terpene amounts of 20 species (${\alpha}$-pinene, camphene, etc.), and meteorological and environmental factors were investigated in the field. Results: Terpene of 16 species was released from the forest and total terpene amounts were 2,080 pptv at the site of Chamaecyparis obtusa, the highest among 11 sites, nearby the first reservoir on Mt. Mudeung. Terpene concentrations in the forest were nine to 23 times higher than found in urban areas. Total terpene amounts had positive correlations with temperature, humidity, carbon dioxide and oxygen (p<0.01) with $R^2$ of 0.345, 0.369, 0.591, 0.145, respectively, from April to July. Wind speed and solar radiation in the forest had a negative correlation with terpene amounts and showed statistical insignificance with p-values of 0.118 and 0.233, respectively. Conclusions: This study suggests that the amounts of terpene around Mt. Mudeung are indeed higher, so visitors may enjoy a therapeutic walk in the forest with a healing effect. These results showed the forest was very effective for improving human health.

Transport behavior of a surfactant tracer(CPC) with Langmuir type adsorption isotherm on NAPL-water interface in a homogeneous porous medium (NAPL-물 계면에서 Langmuir형 흡착특성을 보이는 계면추적자(CPC)의 다공성 균질매질내 유동특성)

  • 김헌기;문희수;이상훈
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.3-13
    • /
    • 2001
  • It has been known that nonlinear characteristics of sorption affect the transport behavior of water soluble pollutants in soils. However detailed experimental studies have not been performed to verify the effect of non-linearity of adsorption isotherm on transport of chemicals in porous media. In this research, the distortion of breakthrough curves of a cationic surfactant (cetylpyridinium chloride, CPC) in a engineered stainless steel column packed with glass beads were investigated. Glass beads with about 110 $\mu\textrm{m}$diameter coated with a thin n-decane film were used as the media providing the sorption surface for CPC. The CPC adsorption isotherm on the surface of n-decane from aqueous solution was a typical Langmuir type. The breakthrough curve of CPC using step Input showed a late breakthrough on the front side and early breakthrough on the back side accordance to the shape of the isotherm. The retardation factor of CPC was found to be a strong function of the input concentration, which also a manifestation of the non-linearity of the isotherm. The retardation factors for the CPC with step input agreed with those of pulse input that the maximum concentrations are controlled to be the same as the step input concentrations. This results support the validity of the unproven field practices of using hydrogeotracers with non-linear adsorption isotherms to determine the hydrogeological parameters, e.g., NAPL saturation, air-water or NAPL-water interfacial areas.

  • PDF

Microstructure and Hardness of Yb:YAG Disc Laser Surface Overlap Melted Cold Die Steel, STD11 (Yb:YAG 디스크 레이저로 표면 오버랩 용융된 냉간금형강, STD11의 미세조직과 경도)

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yun, Jung Gil;Oh, Myeong-Hwan;Kim, Byung Min;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Laser surface Melting Process is getting hardening layer that has enough depth of hardening layer as well as no defects by melting surface of substrate. This study used CW(Continuous Wave) Yb:YAG and STD11. Laser beam speed, power and beam interval are fixed at 70mm/sec, 2.8kW and 800um respectively. Hardness in the weld zone are equal to 400Hv regardless of melting zone, remelting zone overlapped by next beam and HAZ. Similarly, microstructures in all weld zone consist of dendrite structure that arm spacing is $3{\sim}4{\mu}m$, matrix is ${\gamma}$(Austenite) and dendrite boundary consists of ${\gamma}$ and $M_7C_3$ of eutectic phase. This microstructure crystallizes from liquid to ${\gamma}$ of primary crystal and residual liquid forms ${\gamma}$ and $M_7C_3$ of eutectic phase by eutectic reaction at $1266^{\circ}C$. After solidification is complete, primary crystal and eutectic phase remain at room temperature without phase transformation by quenching. On the other hand, microstructures of substrate consist of ferrite, fine $M_{23}C_6$ and coarse $M_7C_3$ that have 210Hv. Microstructures in the HAZ consist of fine $M_{23}C_6$ and coarse $M_7C_3$ like substrate. But, $M_{23}C_6$ increases and matrix was changed from ferrite to bainite that has hardness above 400Hv. Partial Melted Zone is formed between melting zone and HAZ. Partial Melted Zone near the melting zone consists of ${\gamma}$, $M_7C_3$ and martensite and Partial Melted Zone near the HAZ consists of eutectic phase around ${\gamma}$ and $M_7C_3$. Hardness is maximum 557Hv in the partial melted zone.

Effect of Transient Condition on Propeller Shaft Movement during Starboard Turning under Ballast Draught Condition for the 50,000 DWT Oil Tanker (50,000 DWT 유조선의 밸러스트 흘수에서 우현 전타시 과도상태가 프로펠러축 거동에 미치는 영향 연구)

  • Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.412-418
    • /
    • 2020
  • Generally, the propeller shaft that constitutes the ship shaft system has different patterns of behavior due to the ef ects of engine power, propeller load and eccentric thrust, which increases the risk of bearing failure by causing local load variations. To prevent this, different studies of the propulsion shaft system have been conducted focused the relative inclination angle and oil film retention between the shaft and the support bearing, mainly with respect to the Rules for the Classification of Steel Ships. However, in order to secure the stability of the propulsion shaft via a more detailed evaluation, it is necessary to consider dynamic conditions, including the transient state due to sudden change in the stern wakefield. In this context, a 50,000 DWT vessel was analyzed using the strain gauge method, and the effects of propeller shaft movement were analyzed on the starboard rudder turn which is a typical transient state during normal continuous rate(NCR) operation in ballast draught condition. Analysis results confirm that the changed propeller eccentric thrust acts as a force that temporarily pushes down the shaft to increase the local load of the stern tube bearing and negatively affects the stability of the shaft system.

A Study on the Development of the Seismic Fragility Functions of the High Speed Railway Tunnels in use (기존 고속철도 터널의 지진취약도 함수 개발에 관한 연구)

  • Kim, Hongkyoon;Shin, Chulsik;Lee, Taehyung;Lee, Jonggun;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the staged seismic performance evaluations were conducted to the 91 high speed railway tunnels in use for checking whether to comply with the recent design criteria or not. In addition, the seismic fragility functions of the tunnels were developed to allow the probabilistic risk assessment. The results of the staged seismic performance evaluations which consist of a preliminary assessment and a detailed assessment, show that the tunnels comply with the recent design criteria. With reference to the results of previous studies, a form of the proposed seismic fragility functions was set as a log-normal distribution by PGA, and the parameters of the functions were determined by using the probability of damage for the design PGA level. The seismic fragility functions were developed for each types (Cut & Cover, NATM) of tunnels. The seismic fragility functions from this study and the existing research results (FEMA, 2004) were compared to evaluate the seismic performance level of the tunnels, as a result the tunnels of this study were relatively superior to the ASSM tunnels on the seismic performance.

Design on the large section of station tunnel under shallow overburden (저토피고 대단면 정거장터널의 설계)

  • Jeong, Yun-Young;Choi, Hae-Joon;Kim, Byung-Ju;Yu, Bong-Won;Kim, Yong-Il;Oh, Sung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.171-182
    • /
    • 2007
  • For minimizing the effect on the focus of civil traffic and environment conditions related to the excavation at the traffic jamming points, an underground station tunnel was planned with 35.5 m in length and bigger area than $200\;m^2$ in sedimentary rock mass. It faced the case that the overburden was just under 13 m. Not based on a pattern design but on the case histories of similar projects and arching effect, the design of large section tunnel under shallow overburden was investigated on three design subjects which are shape effect on the section area, application method of support pressure, and supporting and tunnel safety. According to the mechanical effect from section shape, a basic design and a preliminary design was obtained, and then supporting method of large section was planned by the supporting of NATM and a pipe roof method for subsidence prevention and mechanical stability. From the comparative study between both designs, it was found that the basic design was suitable and acceptable for the steel alignment of tunnel lining, safety and the design parameter restricted by the limit considered as partition of the excavation facilities. Through the analysis result of preliminary design showing the mechanical stability without stress concentration in tunnel arch level, it also was induced that shape effect of the large section area and yielding load obtained from deformation zone in the surrounding rock mass of tunnel have to be considered as major topics for the further development of design technique on the large section tunnel.

  • PDF