• Title/Summary/Keyword: steel structure construction

Search Result 1,026, Processing Time 0.027 seconds

A Study on the Materials Characteristics of High Tensile Strength Steel(SM570) Plates (고장력(SM570)강재의 재료특성에 관한 연구)

  • Im, Sung Woo;Ko, Sang Ki;Ha, Dong Woo;Oh, Sang Hoon;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.649-659
    • /
    • 2000
  • In this study, the chemical compositions and mechanical properties of high tensile strength steel plates in accordance with their thickness are quantitatively estimated, that are steel plates SM570 to be purposed to use in building structure. Test results of steel plates SM570 are compared with those of steel plates SS400 and steel plates SM490 mostly using building structure. It is found that chemical compositions, carbon equivalent, parameter of welding crack susceptibility, yield strength, tensile strength, elongation, and impact strength have satisfied the prescribed value in KS code for all case of thickness.

  • PDF

Development of Seismic Strengthening Composite Method using Steel type CFT Frame (철골형 CFT 프레임을 활용한 내진보강 복합공법 개발)

  • Lee, Dong-Oun;Woo, Jong-Yeol;Park, Hyeon-Jeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.101-102
    • /
    • 2018
  • There is a risk that the damage caused by frequent earthquakes can lead to the risk of personal injury due to cracks in buildings and collapse of major structures. Although the seismic design of the new building is designed to be reinforced, the existing structure is not exposed to the risk of earthquake. Therefore, it is aimed to develop the steel frame type CFT composite method which can easily reinforce the CFT structural system with excellent seismic performance against the old non - seismic structure.

  • PDF

Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 1st Report : on the Mechanical Properties and Microstructure (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 - 제1보 : 기계적 특성 및 조직)

  • Ahn, Seok-Hwan;Jeong, Jeong-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.64-71
    • /
    • 2005
  • The welding methods have been applied to the most structural products used in the automobile, ship construction, and construction. The structure steel must have sufficient strength of structure; However, the mechanical properties of the welded part changes when it is welded. Therefore, the stability or life of the structure may be affected by the changed mechanical properties. The mechanical properties of the welded part must be examined in order to ensure the safety of structure. In this research, the SS400 steel and the STS304 steel were used to estimate the mechanical properties of the HAZ by weld thermal cycle simulation. In this study, the materials were used to examine the weld thermal cycle simulation characteristic, under two conditions: the drawing with diameter of $\Phi$10 and the residual stress removal treatment. To examine the mechanical properties by the weld thermal cycle simulation, the tensile test was carried out in room temperature. The crosshead speed was lmm/min.

Studies on post-tensioned and shaped space-truss domes

  • Schmidt, Lewis C.;Li, Hewen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.693-710
    • /
    • 1998
  • This paper concerns studies on the shape formation of post-tensioned and shaped steel domes. The post-tensioned and shaped steel domes, assembled initially at ground level in an essentially flat condition, are shaped to a curved space form and erected into the final position by means of a post-tensioning technique. Based on previous studies on this shape formation principle, three post-tensioned and shaped steel domes have been constructed. The results of the shape formation tests and finite element analyses are reported in this paper. It is found that the first two test domes did not furnish a part-spherical shape as predicted by finite element analyses, because the movements of some mechanisms were not controlled sufficiently. With a revised post-tensioning method, the third dome obtained the theoretical prediction. The test results of the three post-tensioned and shaped domes have shown that a necessary condition to form a desired space shape from a planar layout with low joint stiffnesses is that the movements of all the existing mechanisms must be effectively controlled as indicated by the finite element analysis. The extent of the maximum elastic deformation of a post-tensioned and shaped steel structure is determined by the strength of the top chords and their joints. However, due to the semi-rigid characteristic of the top chord joints, the finite element analyses cannot give a close prediction for the maximum elastic deformations of the post-tensioned and shaped steel domes. The results of the current studies can be helpful for the design and construction of this type of structure.

A Study on the Development of Checklist for Safety Management of Frequently occured Accident Process in Steel Structural Work (철골공사 재해다발공정의 안전관리를 위한 체크리스트 개발에 관한 연구)

  • Hong Hyun-Seok;Yeo Seong-Jin;Jeong Young-Heun;Kim Chang-Duk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.552-555
    • /
    • 2004
  • As the scale of building construction is larger and more complex, accident is increasing on the steel structure work process. But Safety-Inspection has been carried out through many other checklists in the workplace, it hasn't been used actively. Because checklist wasn't written at the level of specific work and applied scope is Insufficient. So, we must grasp accidental cause about detailed work for making safety management checklist accurately. For this study, we are confining a range to steel structure work of all the building construction. We will classify steel structure process into the detailed work for preventing accident. And we will grasp accidental cause about detailed work for developing the checklist in the future.

  • PDF

Structural Performance of High-Strength Concrete-Filled Steel Tube Steel Columns using Different Strength Steels (이종강종을 사용한 고강도 CFT 합성부재의 구조성능)

  • Choi, In Rak;Chung, Kyung Soo;Kim, Jin Ho;Hong, Geon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.711-723
    • /
    • 2012
  • Structural tests were performed to investigate the structural performance of concrete-filled steel tube column using different strength steels in their flange and web with high-strength steel HSA800 and mild steel SM490, respectively. The test parameters included the strength of column flange and infill concrete, and effect of concrete infill. Connection between different grade steels were welded using the electrode appropriate for mild steel and verified its performance. To evaluate the behavior of test specimens, eccentric loading tests were performed and the results were compared with the prediction by current design codes. Axial load and moment carrying capacity of test specimens increased with the yield strength of compression flange and weld fracture occurred after the specimen shows full strength. The prediction result for axial load-bending moment relationship and effective flexural stiffness gave good agreement with the test result.

Development of Application Technology of High-Strength Reinforcing Bars for Nuclear Power Plant Structure : Performance Evaluation Test of the Wall (원전 구조물의 고강도 철근 적용 기술개발 : 벽체의 성능평가 실험)

  • Kim, Seok-Chul;Lim, Sang-Joon;Lee, Byung-Soo;Bang, Chang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.201-202
    • /
    • 2012
  • Recently, High-Strength steel reinforcement has been studied throughout the internal and external. One of the advantages using High-Strength steel reinforcement in construction is the economic effect due to the decreasing of its quantity. Also, another good effect is the increases of workability by reason of reducing the congestion. But, realistically it is not used in nuclear power plant construction site because of the restriction of design standard. The purpose of this report secures the reliability and changes the code through the performance evaluation test of the wall using the high-strength steel reinforcement in nuclear power plant.

  • PDF

Reinforcing Method for Steel Pile Head connection in RC footing (분할된 원호판을 이용한 강관두부보강법에 관한 연구)

  • Noh, Sam-Young;Kim, Kwang-Mo;Han, Seok-Hee;Min, In-Gi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.476-485
    • /
    • 2006
  • The connection system of steel pile and RC footing is an important structure, because the total load of upper construction should be transferred through this joint construction of different two materials-steel and RC-with strongly changed section area. Although many connection systems have been developed, their structural and economical efficiency and workability are often insufficient. Therefore, a new connecting system was developed to improve the problems of current systems. The divided arc plate could improve the workability and economical efficiency, structural efficiency could be reached by welding construction. The main purpose of the research is to evaluate the structural behavior of the new designed connection system through experiments and numerical analysis.

  • PDF

A study on the Aluminium Beam Methods for Building a Stone Finished Envelope (석재 외피 시공을 위한 알루미늄 빔 지지공법 연구)

  • Kim, Jang-Ook;Lee, Young-Lae;Hong, Seong-Wook;Doh, Sun-Boong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.235-242
    • /
    • 2012
  • In recently constructed building, It has become fashionable again that the heavy external skin system such as a Stone Finished Envelope. There are Squared Steel Pipe Methods, C-Shaped Steel Pipe Methods, and Aluminum Beam Methods in the structure of a heavy external skin system. The Aluminum Beam Methods is often misunderstood as a Plane Truss Structure, but this method is not appropriate to be called to a truss structure but a beam methods. The Aluminum Beam Methods is the most Eco-friendly methods in terms of Quality assurance, Efficiency, Safety, Construction period, Durability, and Recyclability. And this Methods is also very appropriate in considering the point of Energy conservation, Waste reduction, Long-life architecture, Replacement parts, Environmental protection, Public efficiency, and Building demolition.

  • PDF

A Case study of steel sheet pile (강널말뚝을 이용한 국내.외 시공 사례)

  • 여병철;김광일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.111-118
    • /
    • 1994
  • The use of steel sheet pile walls as barrier walls have the temporary for coffer dam, retaining wall in excavation, etc., but also permanent of semi-permanent for harbor construction, containment systems, vertical barrier systems for waste disposal (landfill) or subway in excavarion. In all these applicaions the resistance of the structure to seepage plays an important role. Also the stability and longevity of the construction, the possibility of permanent control and survey make the steel sheet pile wall a nearly perfect vertical barrier from a technical and economical point of view.

  • PDF