• Title/Summary/Keyword: steel strap

Search Result 17, Processing Time 0.02 seconds

A Study on Static and Fatigue Behavior of Restrained Concrete Decks without Rebar by Steel Strap (Steel Strap으로 횡구속된 무철근 바닥판의 정적 및 피로거동 특성 연구)

  • Jo, Byung Wan;Kim, Cheol Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.137-147
    • /
    • 2012
  • In the steel-free bridge concrete deck, steel straps are generally used instead of conventional steel rebar while laterally restrained in the perpendicular direction to the traffic in order fir the arching effect of concrete deck. In this paper, the minimum amount of FRP bar is to be suggested based on the structural strength, crack propagation, stress level and others in order to control cracks. As a result of laboratory tests, the structural strength of deck with 0.15 percentage of steel strap showed improved structural strength including ductility. The long-term serviceability of steel strap deck with FRP bar proved to satisfy the requirements and to be structurally stable while showing the amount of crack and residual vertical displacement within the allowable limits after two million cyclic loadings. The structural failure of RC bridge deck is generally caused from the punching shear rather than moment. Therefore, the ultimate load at failure could be estimated using the shear strength formula in the two-way slab based on ACI and AASHTO criteria. However the design criteria tend to underestimate the shear strength since they don't consider the arching effects and nonlinear fracture in bridge deck with lateral confinement. In this paper, an equation to estimate the punching shear strength of steel strap deck is to be developed considering the actual failure geometries and effect of lateral confinement by strap while the results are verified in accordance with laboratory tests.

Performance-based evaluation of strap-braced cold-formed steel frames using incremental dynamic analysis

  • Davani, M.R.;Hatami, S.;Zare, A.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1369-1388
    • /
    • 2016
  • This study is an effort to clearly recognize the seismic damages occurred in strap-braced cold formed steel frames. In order to serve this purpose, a detailed investigation was conducted on 9 full scale strap-braced CFS walls and the required data were derived from the results of the experiments. As a consequence, quantitative and qualitative damage indices have been proposed in three seismic performance levels. Moreover, in order to assess seismic performance of the strap-braced CFS frames, a total of 8 models categorized into three types are utilized. Based on the experimental results, structural characteristics are calculated and all frames have been modeled as single degree of freedom systems. Incremental dynamic analysis using OPENSEES software is utilized to calculate seismic demand of the strap-braced CFS walls. Finally, fragility curves are calculated based on three damage limit states proposed by this paper. The results showed that the use of cladding and other elements, which contribute positively to the lateral stiffness and strength, increase the efficiency of strap-braced CFS walls in seismic events.

Experimental Study on the Cyclic Behavior of Modular Building with Strap Braced Load Bearing Steel Stud Walls (스트랩 브레이스를 갖는 내력벽식 모듈러건축 스틸스터드 벽체의 반복하중에 대한 거동 연구)

  • Lee, Doo Yong;Cho, Bong Ho;Kim, Tae Hyeong;Ha, Tae Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.415-425
    • /
    • 2016
  • Load-bearing steel stud wall system is widely used for the middle-to-high rise modular buildings worldwide. Seismic performance is a key issue to apply load-bearing steel stud wall system to modular buildings in Korea. This study proposes a new strap braced steel stud wall system with enhanced seismic performance and design equations considering the flexural behaviour of the vertical outer studs. For the verification, two specimens with different strap braces and vertical outer stud were designed and tested. The test results showed that the total strengths were evaluated to be 1.11 to 1.18 times higher than the predicted values. Usually strap braced walls are considered to have low energy dissipation capacities. The proposed system showed enhanced seismic performance with equivalent damping of 9.42% due to the reduced pinching effects.

Shear Strengthening Effect on Reinforced Concrete Beams Strengthened by Vertical Slit Type Steel Plates (수직 Slit형(形) 강판으로 전단보강된 철근콘트리트 보의 전단보강효과)

  • Lee, Choon-Ho;Kwon, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.195-204
    • /
    • 2009
  • Application of steel plates is one of widely used methods for shear strengthening of reinforced concrete beams that are insufficient of shear capacity. While the existing method applying solid steel plates provides good shear rigidity, however, it is concerned by brittle bond failure patterns, inefficient material usage, and low constructability. The use of strap type steel plates has also shortcomings of low strenthening effect due to small interface bonding area and ununified behavior between plates and main body. Therefore, this study aims to introduce the shear strengthening method using slit type steel plate, which can solve out the problems aforementioned, and to verify its strengthening effects on shear capacity. A total of 13 specimens strengthened by slit type steel plates were fabricated with primary test parameters of plate width, slit spacing, and plate thickness. The test results from this study were also compared to those from the existing research on RC beams strengthened by strap type steel plates, and the strengthening effects on shear capacity of specimens having bonded slit type steel plates were quantitatively analyzed. The test results showed that the RC beams strengthened by slit type steel plates had greater shear capacities than those with strap type steel plates, which is considered to be the effects of improved composite behavior and larger interface bonding area in the RC beams strengthened by the slit type steel plates.

Modeling for the strap combined footings Part I: Optimal dimensioning

  • Aguilera-Mancilla, Gabriel;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.97-108
    • /
    • 2019
  • This paper presents a new model for the strap combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. Research presented in this paper shows that can be applied to the T-shaped combined footings and the rectangular combined footings. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the strap combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. Numerical examples are presented to obtain the optimal area of the contact surface on the soil for the strap combined footings subjected to an axial load and moments in two directions applied to each column. Appendix shows the Tables 4 and 5 for the strap combined footings, the Table 6 for the T-shaped combined footings, and the Table 7 for the rectangular combined footings.

Prediction of premature separation of bonded CFRP plates from strengthened steel beams using a fracture criterion

  • Lenwari, A.;Thepchatri, T.;Watanabe, E.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.565-574
    • /
    • 2002
  • This paper presents a method for predicting premature separation of carbon fiber reinforced plastic (CFRP) plates from strengthened steel beams. The fracture criterion based on material-induced singularity is formulated in terms of a singular intensity factor. Static test on double strap joints was selected to provide the critical stress intensity factor in the criterion because good degree of accuracy and consistency of experimental data can be expected compared with the unsymmetrically loaded single lap joints. The debond/separation loads of steel beams with different CFRP lengths were measured and compared with those predicted from the criterion. Good agreement between the test results and the prediction was found.

Design Equation Suggestion through Parametric Study of Laterally Restrained Concrete Decks with Steel Strap (Steel Strap으로 횡보강된 콘크리트 바닥판의 매개변수해석을 통한 설계식 제안)

  • Kim, Cheol-Hwan;Yi, Seong-Tae;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.49-57
    • /
    • 2014
  • A deterioration of typical reinforced concrete (RC) bridge deck is due to the use of calcium chloride, cracks and water penetration inside of the deck slab with steel reinforcement. In order to eliminate the defects of RC decks in terms of material, therefore, the steel-strapped deck system is studied and developed by maximizing the arching effect while the girders are restrained using straps in lateral direction to the bridge. This parametric study was performed to analyze the structural characteristics of steel-strapped deck, and to identify the factors of the thickness, span length and lateral restraint stiffness of deck slab considering the concrete non-linearity. Finally, a design equation, which is adequate to South Korea, is suggested.

Experimental Investigation on the Serration Process (돌기성형공정에 관한 실험적 연구)

  • Koo, H.S.;Park, Y.S.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.203-209
    • /
    • 2008
  • In this paper, experimental investigation has been performed to analyze the forming process of toothed or serrated sheets, which is used as strap engaging surface of the seal to secure together overlapping portions of steel or plastic strapping ligature. Serration formed on the strap engaging surface of the seal prevent from relative slipping between overlapping ligatures after closing the seal. The geometry of tooth on the strap engaging surface is directly related to the quality of securing overlapping ligatures together. Inclined indentation followed by scratching operation has been proposed and applied to the experiments. Punch entry and face angles are selected as process variables to see the influence of these variables on the tooth geometry. Five different punch entry angles have been applied to experiments and three different punch face angles have been selected for each case of punch entry angle. Clay is selected as model material for experiments. Experimental results are summarized in terms of tooth height, tooth width, and aspect ratio such as tooth height to width ratio, respectively.

Earthquake Resistance of Modular Building Units Using Load-Bearing Steel Stud Panels (내력벽식 스터드패널을 적용한 모듈러건물유닛의 내진성능)

  • Ha, Tae Hyu;Cho, Bong-Ho;Kim, Tae Hyeong;Lee, Doo Yong;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.519-530
    • /
    • 2013
  • Cyclic tests on modular building units for low-rise buildings composed of stud panels and a light-weight steel perimeter frame, were performed to evaluate the earthquake resistance such as stiffness, load-carrying capacity, ductility, and energy dissipation per load cycle. The strap-braced and sheeted stud panels were used as the primary lateral load-resistant element of the modular building units. Test results showed that the modular building units using the strap-braced and sheeted stud panels exhibited excellent post-yield ductile behaviors. The maximum drift ratios were greater than 5.37% and the displacement ductility ratios were greater than 5.76. However, the energy dissipation per load cycle was poor due to severe pinching during cyclic loading. Nominal strength, stiffness, and yield displacement of the modular building units were predicted based on plastic mechanisms. The predictions reasonably and conservatively correlated with the test results. However, the elastic stiffness of the strap-braced stud panel was significantly overestimated. For conservative design, the elastic stiffness of the strap-braced stud panel needs be decreased to 50% of the nominal value.

Development of Multi-Action Die for the Forming Process of Serrated Sheets (판재의 돌기성형을 위한 공정 개발에 관한 연구)

  • Koo, H.S.;Min, K.H.;Seo, J.M.;Noh, J.H.;Vishara, R.J.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • This paper is concerned with the development of multi-action die or multiple sliding die for the forming process of serrated sheets. Serrated sheets is used as a toothed or serrated seal for securing together overlapping portions of steel or plastic strapping ligature and have been produced conventionally in several methods such as rolling and indentation. Recently, longitudinally oriented thermoplastic materials have been widely used in the strapping industry, while such materials are quite slippery. Provided projections on a seal biting into the strap should overcome the slipperiness and also the tooth configuration must be closely controlled to avoid too much transverse penetration of the strap which could result in the shredding of the strap when it is placed under tension. The seal includes a central portion with a plurality of teeth which bite into one strap portion and a pair of reversely bent legs with a plurality of teeth which bite into the other strap portion. Forming processes applicable for serrated sheets have reviewed in qualitative sense to find possibility in terms of applicability of one of existing processes to the serrated sheet forming process. Existing seal products have been analyzed with enlarged picture of strap contacting surface of the seal by microscope. Based on the analyses of the existing forming processes and seal products, a new forming process is proposed for serrated sheets. The proposed process requires a multislide die which enables inclined indentation or cut-in into the seal material as well as scratching processes sequentially in a single action press.