DOI QR코드

DOI QR Code

Earthquake Resistance of Modular Building Units Using Load-Bearing Steel Stud Panels

내력벽식 스터드패널을 적용한 모듈러건물유닛의 내진성능

  • Ha, Tae Hyu (Research Institute of Industrial Science & Technology) ;
  • Cho, Bong-Ho (Dept. of Architectural Engineering, Ajou University) ;
  • Kim, Tae Hyeong (Dept. of Architectural Engineering, Ajou University) ;
  • Lee, Doo Yong (Dept. of Architectural Engineering, Ajou University) ;
  • Eom, Tae Sung (Dept. of Architectural Engineering, Dankook University)
  • 하태휴 (포항산업과학연구원 건축구조본부) ;
  • 조봉호 (아주대학교, 건축공학과) ;
  • 김태형 (아주대학교, 건축공학과) ;
  • 이두용 (아주대학교, 건축공학과) ;
  • 엄태성 (단국대학교, 건축공학과)
  • Received : 2013.02.20
  • Accepted : 2013.08.06
  • Published : 2013.10.27

Abstract

Cyclic tests on modular building units for low-rise buildings composed of stud panels and a light-weight steel perimeter frame, were performed to evaluate the earthquake resistance such as stiffness, load-carrying capacity, ductility, and energy dissipation per load cycle. The strap-braced and sheeted stud panels were used as the primary lateral load-resistant element of the modular building units. Test results showed that the modular building units using the strap-braced and sheeted stud panels exhibited excellent post-yield ductile behaviors. The maximum drift ratios were greater than 5.37% and the displacement ductility ratios were greater than 5.76. However, the energy dissipation per load cycle was poor due to severe pinching during cyclic loading. Nominal strength, stiffness, and yield displacement of the modular building units were predicted based on plastic mechanisms. The predictions reasonably and conservatively correlated with the test results. However, the elastic stiffness of the strap-braced stud panel was significantly overestimated. For conservative design, the elastic stiffness of the strap-braced stud panel needs be decreased to 50% of the nominal value.

본 연구에서는 스터드패널과 경량철골골조로 구성된 모듈러건물 유닛의 강성, 하중재하능력, 연성능력, 에너지소산능력 등 내진성능을 평가하기 위하여 주기실험을 수행하였다. 모듈러건물 유닛의 횡력저항요소로서 스트랩브레이스 및 시트강판으로 보강된 스터드패널을 사용하였다. 실험 결과, 스트랩브레이스 및 시트강판 보강 스터드패널을 사용한 모듈러건물유닛은 우수한 연성거동을 보였다. 최대변위비는 5.37% 이상을 보였고, 변위연성도는 5.76 이상인 것으로 나타났다. 그러나 주기거동 동안 핀칭이 크게 발생하여 주기당 에너지소산량은 좋지 않은 것으로 나타났다. 모듈러건물유닛의 소성메커니즘을 바탕으로 내진설계를 위한 강도, 항복변위, 탄성강성 등 설계식을 제안하였고 실험 결과와 비교를 통하여 제안된 설계식을 검증하였다. 제안된 방법은 모듈러건물유닛의 하중재하능력, 강성 등 내진성능을 합리적으로 예측하였다. 그러나 스트랩브레이스 보강 스터드패널의 탄성강성은 크게 과대평가되었으므로, 안전한 내진설계를 위해서는 구조해석 시 탄성강성을 50%로 줄이는 것이 필요하다.

Keywords

References

  1. 이상섭, 배규웅, 박금성, 홍성엽(2013) 유닛 모듈러 기둥 - 보 조인트의 구조 성능에 대한 실험적 평가, 한국강구조회논문집, 한국강구조학회, 제25권, 제3호, pp.255-265. Lee, S.S., Bae, G.W., Park, K.S., and Hong, S.Y. (2013) An Experiment Evaluation of Structural Performance for the Beam to Column Joints in Unit Modular System, Journal of Korean Society of Steel Construction, KSSC, Vol. 25, No. 3, pp.255-265 (in Korean). https://doi.org/10.7781/kjoss.2013.25.3.255
  2. Hong, S.G., Cho, B.H., Chung, K.S., and Moon, J.H. (2011) Behavior of Framed Modular Building System with Double Skin Steel Panels, Journal of Constructional Steel Research, Vol. 67, No. 6, pp.936-946. https://doi.org/10.1016/j.jcsr.2011.02.002
  3. Annan, C.D., Youssef, M.A., and El Naggar, M.H. (2009) Experimental Evaluation of the Seismic Performance of Modular Steel-braced Frames, Engineering Structures, Vol. 31, No. 7, pp.1435-1446 https://doi.org/10.1016/j.engstruct.2009.02.024
  4. Moghimi, H. and Ronagh, H.R. (2009) Better Connection Details for Strap-braced CFS Stud Walls in Seismic Regions, Thin-walled Structure, Vol. 47, No. 2, pp.122-135. https://doi.org/10.1016/j.tws.2008.07.003
  5. Moghimi, H. and Ronagh, H.R. (2009) Performance of Light-gauge Cold-formed Steel Strap-braced Stud Walls Subjected to Cyclic Loading, Engineering Structures, Vol. 31, No. 1, pp.69-83. https://doi.org/10.1016/j.engstruct.2008.07.016
  6. Kim, T.W., Wilcoski, J., Foutch, D.A., and Lee M.S. (2006) Shaketable Tests of Cold-formed Steel Shear Panel, Engineering Structures, Vol. 28, No. 10, pp.1462-1470. https://doi.org/10.1016/j.engstruct.2006.01.014
  7. Adham, S.A., Avanessian, V., Hart, G.C., Anderson, R.W., Elmlinger, J., and Gregory, J. (1990) Shear Wall Resistance of Lightgauge Steel Stud Wall System, Earthquake Spectra, Vol. 6, No. 1, pp.1-14.
  8. Fulop, L.A. and Dubina, D. (2004) Performance of Wall-stud Cold-formed Shear Panels Under Monotonic and Cyclic Loading, PartI: Experimental research, Thin-walled Structure, Vol. 42, No. 2, pp.321-338. https://doi.org/10.1016/S0263-8231(03)00063-6
  9. Al-Kharat, M. and Rogers, C.A. (2007) Inelastic Performance of Cold-formed Steel Strap Braced Walls, Journal of Construction Steel Research, Vol. 63, No. 4, pp.460-474. https://doi.org/10.1016/j.jcsr.2006.06.040
  10. 권영봉, 서응규, 임덕만, 김갑득, 권인규(2012) 복부에 슬릿이 있는 박판냉간성형형강 스터드의 압축강도, 한국강구조회논문집, 한국강구조학회, 제24권, 제2호, pp. 189-197. Kwon, Y.B., Seo, E.K., Lim, D.M., Kim, G.D., and Kwon, I.K. (2012) The Compressive Strength of Thin-Walled Cold-Formed Steel Studs with Slits in the Web, Journal of Korean Society of Steel Construction, KSSC, Vol. 24, No. 2, pp. 189-197 (in Korean). https://doi.org/10.7781/kjoss.2012.24.2.189
  11. Eurocode 3 (2004) Design of steel structures. Part 1-3: general rules. supplementary rules for cold-formed members and sheeting, CEN European Committee for Standardisation.
  12. Cassafont, M., Arnedo, A., Roure, F., and Rodriquez-Ferran, A. (2007) Experimental Testing of Joints for Seismic Design of Lightweight Structures. Part 3: Gussets, Corner Joints, X-braced Frame, Thin-walled Structures, Vol. 45, No. 7-8, pp.637-659. https://doi.org/10.1016/j.tws.2007.05.008
  13. 서건호, 서상정, 권영봉(2011) 국부좌굴이 발생하는 H-형강 휨부재의 강도에 관한 연구, 한국강구조회논문집, 한국강구조학회, 제23권, 제6호, pp.647-657. Seo, G.H., Seo, S.J., and Kwon, Y.B. (2011) A Study on the Moment Capacity of H-Section Flexural Members with Local Buckling, Journal of Korean Society of Steel Construction, KSSC, Vol. 23, No. 6, pp.647-657 (in Korean).

Cited by

  1. Verification of the Seismic Performance of a Rigidly Connected Modular System Depending on the Shape and Size of the Ceiling Bracket vol.10, pp.3, 2017, https://doi.org/10.3390/ma10030263
  2. Research on pretensioned modular frame test and simulations vol.151, 2017, https://doi.org/10.1016/j.engstruct.2017.08.019
  3. A Study of Modular Dome Structural Modeling with Highly Filled Extrusion Wood-Plastic Composite Member vol.19, pp.2, 2015, https://doi.org/10.11112/jksmi.2015.19.2.076
  4. A Study on the Shape Modeling and Structural Stability of an Icosahedron-typed Modular Dome vol.15, pp.2, 2015, https://doi.org/10.9712/KASS.2015.15.2.051
  5. 유닛 모듈러 기둥 매입형 기초 접합부에 대한 실험 연구 vol.26, pp.6, 2014, https://doi.org/10.7781/kjoss.2014.26.6.537
  6. 스트랩 브레이스를 갖는 내력벽식 모듈러건축 스틸스터드 벽체의 반복하중에 대한 거동 연구 vol.28, pp.6, 2016, https://doi.org/10.7781/kjoss.2016.28.6.415
  7. 천장 브래킷을 이용한 완전강접합 모듈러 시스템의 구조성능 vol.33, pp.12, 2017, https://doi.org/10.5659/jaik_sc.2017.33.12.37
  8. 브래킷형 완전강접합 모듈러 시스템의 반복가력실험과 해석적 평가 vol.34, pp.3, 2013, https://doi.org/10.5659/jaik_sc.2018.34.3.19
  9. 천장 브래킷형 모듈러 시스템의 브래킷 길이와 볼트에 따른 내진성능평가 vol.34, pp.4, 2013, https://doi.org/10.5659/jaik_sc.2018.34.4.25