• Title/Summary/Keyword: steel specimen

Search Result 1,904, Processing Time 0.029 seconds

Application of Nondestructive Technique on Hydrogen Charging Times of Stainless Steel 304L (스테인리스 304L강의 수소장입시간에 대한 비파괴기법 적용)

  • Lee, Jin-Kyung;Hwang, Seung-Kuk;Lee, Sang-Pill;Bae, Dong-Su;Son, Young-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.60-66
    • /
    • 2015
  • Embrittlement of material by hydrogen charging should be cleared for safety of storage vessel of hydrogen and components deal with hydrogen. A stainless steel is generally used as materials for hydrogen transportation and storage, and it has a big advantage of corrosion resistance due to nickel component in material. In this study, microscopic damage behavior of stainless steel according to the hydrogen charging time using nondestructive evaluation was studied. The surface of stainless steel became more brittle as the hydrogen charging time increased. The parameters of nondestructive evaluation were also changed with the embrittlement of stainless steel surface by hydrogen charging. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties of stainless steel by hydrogen charging. The attenuation coefficient of ultrasonic wave was increased with hydrogen charging time because of surface embrittlement of stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced hydrogen charging. AE event at the hydrogen charged specimen was obviously decreased at the plastic zone of stress-strain curves, while the number of event for the specimen of hydrogen free was dramatically generated when compared with the specimens underwent hydrogen charging.

Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios

  • Yang, Yong;Hao, Ning;Xue, Yicong;Feng, Shiqiang;Yu, Yunlong;Zhang, Shuchen
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.345-360
    • /
    • 2022
  • In this paper, the impact on seismic performance of an economical effective technique for retrofitting reinforced concrete (RC) columns using high-strength steel strips under high axial compression ratios was presented. The experimental program included a series of cyclic loading tests on one nonretrofitted control specimen and three retrofitted specimens. The effects of the axial compression ratio and spacing of the steel strips on the cyclic behavior of the specimens were studied. Based on the test results, the failure modes, hysteretic characteristics, strength and stiffness degradation, displacement ductility, and energy dissipation capacity of the specimens were analyzed in-depth. The analysis showed that the transverse confinement provided by the high-strength steel strips could effectively delay and restrain diagonal crack development and improve the failure mode, which was flexural-shear failure controlled by flexural failure with better ductility. The specimens retrofitted using high-strength steel strips showed more satisfactory seismic performance than the control specimen. The seismic performance and deformation capacity of the retrofitted RC columns increased with decreasing axial compression ratio and steel strip spacing. Based on the test results, a hysteretic model for RC columns that considers the transverse confinement of high-strength steel strips was then established. The hysteretic model showed good agreement with the experimental results, which verified the effectiveness of the proposed hysteretic model. Therefore, the aforementioned analysis can be used for the design of retrofitted RC columns.

Effects of Composite Floor Slab on Seismic Performance of Welded Steel Moment Connections (철골모멘트 용접접합부의 내진성능에 미치는 합성슬래브의 영향)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.385-396
    • /
    • 2014
  • Traditionally, domestic steel design and construction practice has provided extra shear studs to moment frame beams even when they are designed as non-composite beams. In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange side was prevalent. The upward moving of the neutral axis due to the composite action between steel beam and floor deck was speculated to be one of the critical causes. In this study, full-scale seismic testing was conducted to investigate the side effects of the composite action in steel seismic moment frames. The specimen PN700-C, designed following the domestic connection and floor deck details, exhibited significant upward shift of the neutral axis under sagging (or positive) moment, thus producing high strain demand on the bottom flange, and showed a poor seismic performance because of brittle fracture of the beam bottom flange at 3% story drift. The specimen DB700-C, designed by using RBS connection and with the details of minimized floor composite action, exhibited superior seismic performance, without experiencing any fracture or concrete crushing, almost identical to the bare steel counterpart (specimen DB700-NC). The results of this study clearly indicate that the beams and connections in seismic steel moment frames should be constructed to minimize the composite action of a floor deck if possible.

Pitting Behavior of Ti/TiN Film Coated onto AISI 304 Stainless Steel (AISI 304 스테인리스강에 코팅된 Ti/TiN film의 공식거동)

  • 박지윤;최한철;김관휴
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2000
  • Effects of Ti content and Ti underlayer on the pitting behavior of TiN coated AISI 304 stainless steel have been studied. The stainless steel containing 0.1~1.0wt% Ti were melted with a vacuum melting furnace and heat treated at $1050^{\circ}C$ for 1hr for solutionization. The specimen were coated with l$\mu\textrm{m}$ and 2$\mu\textrm{m}$ thickness of Ti and TiN by E-beam PVD method. The microstructure and phase analysis were conducted by using XRD, XPS and SEM with these specimen. XRD patterns shows that in TiN single-layer only the TiN (111) Peak is major and the other peaks are very weak, but in Ti/TiN double-layer TiN (220) and TiN (200) peaks are developed. It is observed that the surface of coating is covered with titanium oxide (TiO$_2$) and titanium oxynitride ($TiO_2$N) as well as TiN. Corrosion potential on the anodic polarization curve measured in HCl solution increase in proportion to the Ti content of substrate and by a presence of the Ti underlayer, whereas corrosion and passivation current densities are not affected by either of them. The number and size of pits decrease with increasing Ti content and a presence of the coated Ti film as underlayer in the TiN coated stainless steel.

  • PDF

The Effects of Surface Condition and Flow Rate to the Cathodic Protection Potential and Current on Steel (강의 음극방식에 미치는 표면상태와 유속의 영향)

  • Kyeong-soo, Chung;Seong- Jong, Kim;Myung-Hoon, Lee;Ki-Joon, Kim;Kyung-Man, Moon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.972-980
    • /
    • 2004
  • Cathodic protection is being widely used to protect steel structures in sea water environment, In order to protect steel structures completely, the flow condition of sea water surrounding with this structures and the surface condition of the structures must be considered for a desirable design of cathodic protection. In this study, the optimum protection potential and current density were investigated in terms of cathodic current density, surface condition and a flow condition of sea water. The optium protection potential of the cleaned specimen was -770 mV(SCE) and below. However in the case of the rusted specimen, its potential was -700 mV(SCE) and below, which was somewhat positive than the cleaned one irrespective of flow condition. The optimum cathodic protection current density for both the cleaned and rusted specimens was 100 mA/$\textrm{m}^2$, however, on the flow condition, 200 mA/$\textrm{m}^2$ to be supplied for cathodic protection of steel structures completely for both cleaned and rusted specimens.

Isothermal Transformation Behavior of 10% Cr Heat Resistant Steel Fabricated by Centrifugal Casting Process (원심주조법으로 제조된 10% Cr 내열강의 등온 변태 거동)

  • Kim, J.E.;Lee, J.H.;Kim, D.H.;Yoo, W.D.;Lee, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.2
    • /
    • pp.72-78
    • /
    • 2014
  • Isothermal transformation behavior of a 10% Cr heat resistant steel fabricated by centrifugal casting process was investigated. Normalized specimen at $1100^{\circ}C$ for 1 hour was isothermally annealed at temperature range between $600^{\circ}C$ and $700^{\circ}C$ with various time. The annealed specimen had eutectoid structure which was generated along austenitic grain boundary during isothermal annealing. Areal fraction of eutectoid structure increased up to 25% after holding at $700^{\circ}C$ for 20 hours. It was observed that austenitic matrix was transformed to ferrite structure and fine $M_{23}C_6$ carbides with increase of annealing time. Time-temperature-transformation diagram of the centrifugally cast 10% Cr steel with 0.18 wt% C was plotted based on the results of isothermal transformation behavior.

A Study of the Heat Treatment Effect on the Fatigue Crack Growth Behavior in Dissimilar Weld Metal Joints of SA508 Low-Carbon Steel and AISI316 Austenitic Stainless Steel (SA508 저탄소강과 AISI316 오스테나이트강의 이종 용접부 피로균열 성장 거동에 미치는 열처리 영향 연구)

  • Kim, Chung-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.16-21
    • /
    • 2018
  • The effect of heat treatment on the fatigue crack growth behavior in welded joints between the heat-affected zone (HAZ) of SA 508 Cl.3 low-alloy steel and HAZ of AISI 316L stainless steel is investigated. When the crack propagates across SA 508 Cl.3 or AISI 316L SS and HAZ into the weldment, the fatigue crack growth rate (FCGR) in the HAZ region does not change or decrease despite the increase in stress intensity factor ${\Delta}K$. The residual stress at the HAZ region is more compressive than that at the base Δ materials and weldment. The effect of the welding residual stress on the crack growth behavior is determined by performing a residual stress relief heat treatment at $650^{\circ}C$ for 1h and subsequent furnace cooling. The FCG behavior in the HAZ region in the as-welded specimen and the residual stress relief heat-treated specimen is discussed in terms of the welding residual stress.

Analysis of Compression Characteristics of the Steel Plate-Concrete Wall Structures with Openings (개구부가 있는 강판콘크리트 벽체의 압축특성 분석)

  • Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.245-256
    • /
    • 2012
  • The objective of this study is to investigate the effect of the openings on the structural behavior of SC walls. The test parameters were with or without the reinforcing of openings and sleeve thickness. The common failure showed that the crack in the concrete progressed with the plate's local buckling between the shear connectors. The failure of the openings showed that the vertical wall of the sleeve buckled toward the opening inside. The plate buckling load showed a similar value with or without the sleeve of the opening, respectively. However, the maximum compressive strength of the specimen without the opening was higher than that of specimen with the opening.

A Study on Degradation Characteristic of High Strength Fire Resistance Steel for Frame Structure by Acoustic Emission (음향방출법에 의한 고강도 구조요 내화강의 열화특성에 관한 연구)

  • 김현수;남기우;강창룡
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.51-56
    • /
    • 2000
  • Demand for new nondestructive evaluations is growing to detect tensile crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in tensile test of high strength fire resistance steel for frame structure with time frequency analysis methods. The results obtained are summaries as follows ; In the T and TN specimen consisting of ferrite and pearlite grains, most of acoustic emission events were produced near yield point, mainly due to the dislocation activities during the deformation. However, B specimen under $600^{\circ}C$ - 10min had a two peak which was attribute to the presence of martensite phase. The first peak is before yield point the second is after yield point. The sources of second acoustic emission peak were the debonding of martensite-martensite interface and the micro-cracking of brittle martensite phase. In $600^{\circ}C$-30min to $700^{\circ}C$-60min specimens, many signals were observed from area before yield point and counts were decreased after yield point.

  • PDF