• Title/Summary/Keyword: steel reinforced concrete column

Search Result 586, Processing Time 0.027 seconds

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

A Fiber Model Based on Secondary Development of ABAQUS for Elastic-Plastic Analysis

  • Shi, Yan-Li;Li, Hua-Wei;Wang, Wen-Da;Hou, Chao
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1560-1576
    • /
    • 2018
  • With the aim to provide an efficient platform for the elastic-plastic analysis of steel structures, reinforced concrete (RC) structures and steel-concrete composite structures, a program iFiberLUT based on the fiber model was developed within the framework of ABAQUS. This program contains an ABAQUS Fiber Generator which can automatically divide the beam and column cross sections into fiber sections, and a material library which includes several concrete and steel uniaxial material models. The range of applications of iFiberLUT is introduced and its feasibility is verified through previously reported test data of individual structural members as well as planar steel frames, RC frames and composite frames subjected to various loadings. The simulation results indicate that the developed program is able to achieve high calculation accuracy and favorable convergence within a wide range of applications.

Seismic Performance of Internally Confined Hollow RC Column with Corrugated Steel Tube (파형강관 내부 구속 중공 철근 콘크리트 기둥의 내진 성능)

  • Han, Taek-Hee;Kim, Jong-Min;Kang, Jun-Suk;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.31-38
    • /
    • 2008
  • A column test was performed far a new-type column with a quasi static test. An internally confined hollow reinforced concrete column with a corrugated steel tube (ICH RC-CT column) was tested to evaluate its seismic performance. And also, a general solid RC column was tested fur the comparison. The test was performed as planned drift levels. The lateral displacements and the lateral loads of column specimens were measured during tests. From the test results, the ICH RC-CT column showed smaller energy absorbing capacity than a solid RC column but showed the almost equal energy ductility and equivalent viscous damping ratio to those of the solid RC column.

Feasibility study on corrosion monitoring of a concrete column with central rebar using BOTDR

  • Sun, Yijie;Shi, Bin;Chen, Shen-En;Zhu, Honghu;Zhang, Dan;Lu, Yi
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.41-53
    • /
    • 2014
  • Optical fiber Brillouin sensor in a coil winding setup is proposed in this paper to measure the expansion deformation of a concrete column with a central rebar subjected to accelerated corrosion. The optical sensor monitored the whole dynamic corrosion process from initial deformation to final cracking. Experimental results show that Brillouin Optical Time Domain Reflectometer (BOTDR) can accurately measure the strain values and identify the crack locations of the simulated reinforced concrete (RC) column. A theoretical model is used to calculate the RC corrosion expansive pressure and crack length. The results indicate that the measured strain and cracking history revealed the development of the steel bar corrosion inside the simulated RC column.

Yielding Effective Stiffness of Rectangular RC Bridge Columns for Design Seismic Force (설계지진력 해석시의 철근콘크리트 사각단면교각의 항복유효강성)

  • 배성용;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.941-946
    • /
    • 2001
  • The objectives of this study are to investigate effective stiffness of Rectangular reinforced concrete bridge columns. It is reasonable to use yielding effective stiffness of columns in seismic bridge design, especially in case that plastic hinges form at the bridge columns. In this study, the material nonlinear analysis was conducted for 3, 240 column sections of which variables were the concrete compressive stress, the steel yielding stress, the longitudinal steel location parameter, the longitudinal steel ratio, the axial load level, and the diameter of section. Based on the analytical results, an effective stiffness including two variables(longitudinal steel ratio and axial load ratio) was proposed by regression analyses, and it is compared with test results and the proposed equation for yielding effective stiffness of circular bridge columns.

  • PDF

An interface model for the analysis of the compressive behaviour of RC columns strengthened by steel jackets

  • Minafo, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.233-244
    • /
    • 2019
  • Steel jacketing technique is a retrofitting method often employed for static and seismic strengthening of existing reinforced concrete columns. When no continuity is given to angle chords as they cross the floor, the jacket is considered "indirectly loaded", which means that the load acting on the column is transferred partially to the external jacket through interface shear stresses. The evaluation of load transfer mechanism between core and jacket is not straightforward to be modeled, due to the absence of knowledge of a proper constitutive law of the concrete-to-steel interface and to the difficulties in taking into account the mechanical nonlinearities of materials. This paper presents an incremental analytical/numerical approach for evaluating the compressive response of RC columns strengthened with indirectly loaded jackets. The approach allows calculating shear stresses at the interface between core and jacket and predicting the axial capacity of retrofitted columns. A proper constitutive law is proposed for modelling the interaction between the steel and the concrete. Based on plasticity rules and the non-linear behaviour of materials, the column is divided into portions. After a detailed parametric analysis, comparisons are finally made by theoretical predictions and experimental results available in the literature, showing a good agreement.

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study

  • El-Mahdya, Osama O.;Hamdy, Gehan A.;Hisham, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.673-689
    • /
    • 2021
  • This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.

Construction Application of a Newly Developed Form-Latticed Prefabricated Steel Reinforced Concrete Column (Form-LPSRC 기둥 개발 및 적용 연구)

  • Baek, Hojin;Lee, Seung-Hwan;Kim, Sooyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.487-495
    • /
    • 2014
  • Shortening the construction duration of structural frame work is extremely important because the work accounts for a major percentage of all cost and duration in large projects. For this reason, new construction methods to reduce the duration of structural frame work are being continuously studied and developed. A PSRC composite column, which uses steel angles instead of H-beams, has the advantages of flexural strength and ductility. Moreover, with this PSRC technique, conventional work for reinforcing bars in columns in practice can be skipped. However, one limitation exists in which the form work is still required. This research proposes a Form-LPSRC column method that is prefabricated with the column frame that includes permanent forms attached. Feasibility was examined with mock-up specimens and finally, the technique applied to real practice. Compared to the conventional SRC column method, this study demonstrated that the proposed technique has many advantages in construction duration, cost, quality, safety and environment.

Load-carrying capacity degradation of reinforced concrete piers due to corrosion of wrapped steel plates

  • Gao, Shengbin;Ikai, Toyoki;Ni, Jie;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.91-106
    • /
    • 2016
  • Two-dimensional elastoplastic finite element formulation is employed to investigate the load- carrying capacity degradation of reinforced concrete piers wrapped with steel plates due to occurrence of corrosion at the pier base. By comparing with experimental results, the employed finite element analysis method is verified to be accurate. After that, a series of parametric studies are conducted to investigate the effect of corrosion ratio and corrosion mode of steel plates located near the base of in-service pier P2 on load-carrying capacity of the piers. It is observed that the load-carrying capacity of the piers decreases with the increase in corrosion ratio of steel plates. There exists an obvious linear relationship between the load-carrying capacity and the corrosion ratio in the case of even corrosion mode. The degradation of load-carrying capacity resulted from the web's uneven corrosion mode is more serious than that under even corrosion mode, and the former case is more liable to occur than the latter case in actual engineering application. Finally, the failure modes of the piers under different corrosion state are discussed. It is found that the principal tensile strain of concrete and yield range of steel plates are distributed within a wide range in the case of slight corrosion, and they are concentrated on the column base when complete corrosion occurs. The findings obtained from the present study can provide a useful reference for the maintenance and strengthening of the in-service piers.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.