• Title/Summary/Keyword: steel reinforced concrete column

Search Result 586, Processing Time 0.024 seconds

Evaluation of Bamboo Reinforcements in Structural Concrete Member

  • Siddika, Ayesha;Al Mamun, Md. Abdullah;Siddique, Md. Abu Bakar
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.4
    • /
    • pp.13-19
    • /
    • 2017
  • This study is based on the use and performance of bamboo reinforcements in construction of low-cost structures. This study investigated the physical and mechanical properties of bamboo reinforcements. Bamboo reinforced concrete beam specimens were tested with different reinforcement ratios and observed the load capacity, deflection and failure patterns. It was observed that, flexural strength of bamboo reinforced column is sufficient higher than plain cement concrete and comparable to steel reinforced concrete beams. Bamboo reinforced concrete columns with different reinforcement ratio also tested and observed the ultimate compressive strength and failure pattern. It found, all columns failed in a similar pattern due to crushing of concrete. According to cost analysis, bamboo reinforced beams and columns with moderate reinforcement ratio showed the best strength-cost ratio among plain cement concrete and steel reinforced concrete.

An Experimental Study on the Compression Behavior of the Circular and Square Tubular Steel Pipe filled with Concrete (콘크리트 충전 원형 및 각형 합성 강관 기둥의 압축 거동에 관한 실험적 연구)

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.55-63
    • /
    • 2006
  • Concrete-filled steel columns consist of circular, square or rectangular hollow sections filled concrete. Much research has studied for the behavior of concrete-filled steel structures. The advantages from structural point of view are the triaxial confinement of the concrete within the section, and the fire resistance of the column which largely depends on the residual capacity of the concrete core. The axial capacity of a concrete-filled rectangular or circular section is enhanced by the confining effect of the steel section on the concrete which depends in the magnitude on the shape of the section and the length of the column. Buckling tends to reduce the benefit of confinement on the squash load as the column slenderness increases. In circular sections it is possible to develop the cylinder strength of the concrete. When compare with reinforced concrete columns, the concrete-filled composite column possesses much better strength and ductility in shear and generally in flexure also. Many researches are being conducted about concrete filled steel column to get these advantages in building design. In this paper it is provided to the basic experimental study of compression behavior of the circular and rectangular tubular steel pipe filled with concrete.

  • PDF

Development of Reinforced Concrete Column and Steel Beam Composite Joints (철근콘크리트 기둥과 철골 보 합성구조 접합부 시스템 개발)

  • 김도균;정하선;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.691-698
    • /
    • 2001
  • Recent trends in the construction of long span or tall building frames feature the increase use of composite members that steel and concrete is functioning together in what terms of mixed structural systems. One of such systems, RCS (reinforced concrete column and steel beam) system is introduced and closely examined focusing on bearing strength of the composite joint in this paper. The main objective of this study was to develope detail to increase bearing capacity while bearing failure is one of the two primary modes of failure in RCS system. The results show that specimens with the U-type bearing reinforcement detail developed in this study enhanced the bearing strength by 1.20-1.50. The U-type reinforcement is the effective details to increase joint bearing strength compared to others like vertical reinforcement welded to beam flanges.

  • PDF

TORANOMON HILLS - Super High-Rise Building on Urban Highway -

  • Hitomi, Yasuyoshi;Takahashi, Hiroshi;Karasaki, Hidenori
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.167-171
    • /
    • 2014
  • TORANOMON HILLS is the main building of a large-scale re-development project located in the center of Tokyo. This high-rise building has a height of 247 m and 52 floors above ground, 5 floors below ground, and $62m{\times}80m$ in plan. It is used as hotel, residential facilities, offices, shops and conference facilities. The super structure is mainly a rigid steel frame with response-control devices, using concrete-filled steel tube columns. The underground section is a mixed structure composed of steel, steel-reinforced concrete and reinforced concrete framings. The piled-raft foundation type is used. The remarkable feature of this high-rise building is that the motorway runs through the basements of the building, which makes it stand just above the motorway. This condition is an important factor of the building design. The plan shape is designed to fit along the curve of the motorway. Special columns at the corners are required to avoid placing columns in the motorway. This special column is a single inclined column in the lower floors that branches into two columns in the mid-floors to suit the column location in the upper floors. The cast steel joint is used for the branching point of each special column to securely transfer the stress.

Seismic behavior of steel reinforced concrete cross-shaped column under combined torsion

  • Chen, Zongping;Liu, Xiang
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • Experiments were performed to explore the hysteretic performance of steel reinforced concrete (SRC) cross-shaped columns. Nine specimens were designed and tested under the combined action of compression, flexure, shear and torsion. Torsion-bending ratio (i.e., 0, 0.14, 0.21) and steel forms (i.e., Solid - web steel, T - shaped steel, Channel steel) were considered in the test. Both failure processes and modes were obtained during the whole loading procedure. Based on experimental data, seismic indexes, such as bearing capacity, ductility and energy dissipation were investigated in detail. Experimental results suggest that depending on the torsion-bending ratio, failure modes of SRC cross-shaped columns are bending failure, flexure-torsion failure and torsion-shear failure. Shear - displacement hysteretic loops are fuller than torque - twist angle hysteretic curves. SRC cross-shaped columns exhibit good ductility and deformation capacity. In the range of test parameters, the existence of torque does not reduce the shear force but it reduces the displacement and bending energy dissipation capacity. What is more, the bending energy dissipation capacity increases with the rising of displacement level, while the torsion energy dissipation capacity decreases.

The Overall Investigation of Steel Fiber Strengthening Factor in Shear (전단에 대한 강섬유 보강계수의 종합적 고찰)

  • Lee, Hyun-Ho;Kwon, Yeong-Ho;Lee, Hwa-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.251-254
    • /
    • 2005
  • This study will have to define the shear strengthening effects of steel fiber in beam and column levels, as well as to suggest estimation method of maximum shear capacity of structural members. From review of literature surveys and perform structural member test results, following conclusion can be made; In beam level, steel fiber strengthening factor is suggested from the tensile splitting test results and beam test results. After suggesting shear capacity of beam without stirrups and beam with stirrups by proposed steel fiber strengthening factor, proposed equation is possible to evaluate the shear capacity of beam. In column level, with column test results and proposed steel fiber strengthening factor, shear capacity equation of steel fiber reinforced concrete in column is suggested.

  • PDF

Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading

  • Tang, Chao-Wei
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.243-253
    • /
    • 2018
  • In recent years, concrete-filled box or tubular columns have been commonly used in high-rise buildings. However, a number of fire test results show that there are significant differences between high strength concrete (HSC) and normal strength concrete (NSC) after being subjected to high temperatures. Therefore, this paper presents an investigation on the fire resistance of HSC filled steel tubular columns (CFTCs) under combined temperature and loading. Two groups of full-size specimens were fabricated to consider the effect of type of concrete infilling (plain and reinforced) and the load level on the fire resistance of CFTCs. Prior to fire test, a constant compressive load (i.e., load level for fire design) was applied to the column specimens. Thermal load was then applied on the column specimens in form of ISO 834 standard fire curve in a large-scale laboratory furnace until the set experiment termination condition was reached. The results demonstrate that the higher the axial load level, the worse the fire resistance. Moreover, in the bar-reinforced concrete-filled steel tubular columns, the presence of rebars not only decreased the spread of cracks and the sudden loss of strength, but also contributed to the load-carrying capacity of the concrete core.

Experiments on Second -Order Behavior of High Strength Concrete Columns (고강도 콘크리트 기둥의 2계 거동에 관한 실험적 연구)

  • 김진근;양주경
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.167-172
    • /
    • 1992
  • To analyze the effects compressive strength of concrete and longitudinal steel ratio on second-order moment of columns, 30tied rein reinforced concrete columns with hinged ends were tested. The 80mm square cross section was used and the amount of eccentricity was 24mm. The compressive strengths of column specimens with slenderness ratios of 10, 60, and 100were 250, 648 and 880kg/$\textrm{cm}^2$, and the longitudinal steel ratios were 1.98%(4-D6) and 3.95%(8-D6). The ratio of ultimate load capacity to that of short column with the same eccentricity (Pu/Pn) was much decreased at high slenderness ratio with increasing the compressive strength of concrete. And the lateral displacement of slender column at the ultimate load was decreased as the strength was increased. These are due to that at high slenderness ratio the load capacity and behavior of column are affected by flexural rigidity. And, it was also found that with increasing steel ratio, the value of Pu/Pn and the lateral displacement at the ultimate load were larger for the same slenderness ratio.

  • PDF

An Experimental Study on Failure Modes of High Strength Reinforced Concrete Columns (고강도 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구)

  • 최창익;박동규;손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.442-445
    • /
    • 1997
  • With increasing use of high strength concrete tied columns in structural engineering, it becomes necessary to examine the applicability of related sections of current design codes. High strength concrete has an advantage of strength capacity and stiffness especially for column elements. This paper presents an experimental study of high strength concrete tied columns subjected to eccentric loading. The main variables included in this test were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 34.9Mpa(356kg/$\textrm{cm}^2$ ) to 93.2Mpa(951kg/$\textrm{cm}^2$ ) and the longitudinal steel ratios were between 1.1% and 5.5%. The eccentricity was selected for the different failure modes, i.e., compression control, balanced point, and tension control. The slenderness ratio varied from 19 to 61. The column specimens with same slenderness ratio but with different concrete compressive strength were constructed and tested. The purpose of this paper is to show failure modes of high strength reinforced concrete columns.

  • PDF

Comparison of Steel Fiber Reinforced Column Capacity Using Ordinary and High Strength Concrete (콘크리트 강도에 따른 강섬유 보강기둥의 성능비교)

  • 장극관;이현호;문상덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.23-28
    • /
    • 2001
  • Since the steel fiber used in concrete to improve shear and ductility capacity, a number of laboratory tests have been studied to define shear strengthening effect according steel fiber contents in concrete. This study investigates shear strengthening effect of steel fiber in RC columns according to compression strength of concrete. From the structural performance test, following conclusions can be made; the maximum enhancement of shear strengthening effect can be achieved at about 1.0 %~l.5 % of steel fiber contents in comparison with shear capacity ratio, and ductility capacity slightly improved as steel fiber contents increased.

  • PDF