• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.031 seconds

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.125-137
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.625-625
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

Effects of Axial Force on Deformation Capacity of Steel Encased Reinforced Concrete Beam-Columns (매립형 SRC 기둥재의 변형성능에 대한 축력의 영향)

  • Chung, Jin-An;Yang, Il-Seung;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.251-259
    • /
    • 2003
  • In this paper, an analytical approach hwas been conductsed to clarify the relationships between the axial force and the deformation capacity of steel- encased reinforced- concrete beam-columns. The analytical model was defined as a cantilever. Several parameters influencing the inelastic performance of the beam-columns were selected, as follows: including encased steel area ratios, and sectional shapes of the encased steel, material strengths, and shear-span- to-depth ratios. The Analytical results of the analysis showed that the axial force had to have a maximum limit to ensure the stable behavior of a steel- encased reinforced- concrete beam-column when it was subjected to both axial and repeated lateral loading under a constant rotation angle amplitude. The maximum axial force of the beam-column to be resisted under cyclic lateral loading was defined as the stable-limit axial force to ensure the required rotation angle amplitude. The Analytical results of the analysis indicate that the stable-limit axial load ratio increases as the steel strength increases or as the compressive strength of the concrete decreases. The stable-limit axial load ratio decreases as the encased steel ' s sectional area increases in the case of a 1-shaped sections and it is almost not influenced by the steel sectional area in the case of a cross-shaped section.

Supplier Selection using DEA-AHP Method in Steel Distribution Industry (DEA AHP 모형을 통한 철강유통산업에서의 공급업체 선정)

  • Park, Jinkyu;Kim, Pansoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.51-59
    • /
    • 2017
  • Due to the rapid change of global business environment, the growth of China's steel industry and the inflow of cheap products, domestic steel industry is faced on downward trend. The change of business paradigms from a quantitative growth to a qualitative product is needed in this steel industry. In this environment, it is very important for domestic steel distribution companies to secure their competitiveness by selecting good supply companies through a efficient procurement strategy and effective method. This study tried to find out the success factors of steel distribution industry based on survey research from experts. Weighted values of each factors were found by using AHP (analytic hierarchy process) analysis. The weighted values were applied to DEA(data envelopment analysis) model and eventually the best steel supply company were selected. This paper used 29 domestic steel distribution firms for case example and 5 steps of decision process to select good vendors were suggested. This study used quality, price, delivery and finance as a selection criteria. Using this four criterions, nine variable were suggested. Which were product diversity, base price, discount, payment position, average delivery date, urgency order responsibility and financial condition. These variables were used as a output variable of DEA. Sales and facilities were used as an input variable. Pairwise comparison was conducted using these variables. The weighted value calculated by AHP pairwise comparison were used for DEA analysis. Through the analysis of DEA efficiency process, good DMU (decision making unit) were recommended as a steel supply company. The domestic case example was used to show the effectiveness of this study.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

Axial behavior of steel reinforced lightweight aggregate concrete columns: Analytical studies

  • Mostafa, Mostafa M.A.;Wu, Tao;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.223-239
    • /
    • 2021
  • This paper presents the analytical modeling and finite element (FE) analysis, using ABAQUS software, of the new types of steel reinforced lightweight aggregate concrete (SRLAC) columns with cross-shaped (+shaped and X-shaped) steel section, using proposed three analytical and two FE models in total. The stress-strain material models for different components in the columns, including the confined zones of the lightweight aggregate concrete (LWAC) using three and four concrete zones divisions approaches and with and without taking into account the stirrups reaction effect, are established first. The analytical models for determining the axial load-deformation behavior of the SRLAC columns are drawn based on the materials models. The analytical and FE models' results are compared with previously reported test results of the axially loaded SRLAC columns. The proposed analytical and FE models accurately predict the axial behavior and capacities of the new types of SRLAC columns with acceptable agreements for the load-displacement curves. The LWAC strength, steel section ratio, and steel section configuration affect the contact stress between the concrete and steel sections. The average ratios of the ultimate test load to the three analytical models and FEA model loads, Put /Pa1, Put /Pa2, Put /Pa3, and Put /PFE1, for the tested specimens are 0.96, 1.004, 1.016, and 1.019, respectively. Finally, the analytical parametric studies are also studied, in terms of the effects of confinement, LWAC strength, steel section ratio, and the reinforcement ratio on the axial capacity of the SRLAC column. When concrete strength, confinements, area of steel sections, or reinforcement bars ratio increased, the axial capacities increased.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

The seismic performance of steel pipe-aeolian sand recycled concrete columns

  • Yaohong Wang;Kangjie Chen;Zhiqiang Li;Wei Dong;Bin Wu
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • To investigate the seismic performance of steel pipe-aeolian sand recycled concrete columns, this study designed and produced five specimens. Low-cycle repeated load tests were conducted while maintaining a constant axial compression ratio. The experiment aimed to examine the impact of different aeolian sand replacement rates on the seismic performance of these columns. The test results revealed that the mechanical failure modes of the steel pipe-recycled concrete column and the steel pipe-aeolian sand recycled concrete column were similar. Plastic hinges formed and developed at the column foot, and severe local buckling occurred at the bottom of the steel pipe. Interestingly, the bulging height of the damaged steel pipe was reduced for the specimen mixed with an appropriate amount of wind-deposited sand under the same lateral displacement. The hysteresis curves of all five specimens tested were relatively full, with no significant pinching phenomenon observed. Moreover, compared to steel tube-recycled concrete columns, the steel tube-aeolian sand recycled concrete columns exhibited improved seismic energy dissipation capacity and ductility. However, it was noted that as the aeolian sand replacement rate increased, the bearing capacity of the specimen increased first and then decreased. The seismic performance of the specimen was relatively optimal when the aeolian sand replacement rate was 30%. Upon analysis and comparison, the damage analysis model based on stiffness and energy consumption showed good agreement with the test results and proved suitable for evaluating the damage degree of steel pipe-wind-sand recycled concrete structures.

Estimation of the Local Load-Carrying Capacities of CFCT Column to H-Beam Connections by Yield Line Model -With regard to the Tensile side of Beam flange- (인장측 보플랜지의 항복선 모델을 이용한 CFCT기둥-H형강보 접합부의 국부내력평가)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.525-536
    • /
    • 1998
  • This paper is concerned with a theoretical study on the local load-carrying capacities of Concrete-Filled Circular Tubular(CFCT) column to H-beam connections by yield line theory. In this paper, the three cases which are assumed the yield line are involved. The first model is a simplified yield line model. The second model is modified by x and kx factors. The last one is a Morita's model. The local load-carrying capacities of CFCT column to H-beam connections has been studied both experimentally and theoretically using the yield line theory. The purpose of this paper is to suggest the basic data for developing the non-diaphragm connection.

  • PDF

Applying the Schema Matching Method to XML Semantic Model of Steelbox-bridge's Structural Calculation Reports (강박스교 구조계산서 XML 시맨틱 모델의 스키마 매칭 기법 적용)

  • Yang Yeong-Ae;Kim Bong-Geun;Lee Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.680-687
    • /
    • 2005
  • This study presents a schema matching technique which can be applied to XML semantic model of structural calculation reports of steel-box bridges. The semantic model of structural calculation documents was developed by extracting the optimized common elements from the analyses of various existing structural calculation documents, and the standardized semantic model was schematized by using XML Schema. In addition, the similarity measure technique and the relaxation labeling technique were employed to develop the schema matching algorithm. The former takes into account the element categories and their features, and the latter considers the structural constraints in the semantic model. The standardized XML semantic model of steel-box bridge's structural calculation documents called target schema was compared with existing nonstandardized structural calculation documents called primitive schema by the developed schema matching algorithm Some application examples show the importance of the development of standardized target schema for structural calculation documents and the effectiveness and efficiency of schema matching technique in the examination of the degree of document standardization in structural calculation reports.

  • PDF