• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.036 seconds

Creep Analysis of Type 316LN Stainless Steel by Reference Stress Concept (참조응력 개념에 의한 316LN 강의 크리프 해석)

  • Kim, Woo-Gon;Kim, Dae-Whan;Ryu, Woo-Seog
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.123-128
    • /
    • 2001
  • The creep constants which are used to the reference stress equations of creep damage were obtained to type 316LN stainless steel, and their determining methods were described in detail. Typical Kachanov and Rabotnov(K-R) creep damage model was modified into the damage equations with reference stress concepts, and the modified equations were applied practically to type 316LN stainless steel. In order to determine the reference stress value, a series of high-temperature tensile tests and creep tests were accomplished at $550^{\circ}C$ and $600^{\circ}C$. By using the experimental creep data, the creep constants used in reference stress equations could be obtained to type 316LN stainless steel, and a creep curve on rupture strain was predicted. The reference stress concept on creep damage can be utilized easily as a design tool to predict creep life because the process, which is quantified by the measurement of voids or micro cracks during creep, is omitted.

  • PDF

Approximate Optimization of the Steel Wheel's Disc Hole (스틸휠 디스크 홀의 근사최적화)

  • Kim, Woo-Hyun;Cho, Jae-Seng;Yoo, Wan-Suk;Lim, O-Kaung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.570-573
    • /
    • 2003
  • Wheels for passenger car support the car weight with tires. and they transmit rolling and braking power into the ground. Whittliing away at wheel weight is more effective to boost fuel economy that lighting vehicle body structure. A shape of hole in disk is optimized for minimizing the weight of steel wheel. Pro/ENGINEER program is used for formulating the design model. and ANSYS package is selected for analyzing the design model. It has difficulties 10 interface these commercial software directly. For combining both programs. response surface methodology is applied to construct approximation functions for maximum stresses and maximum displacements are obtained by full factorial design of five levels. This steel wheel is modeled in 14-inch diameter of rim. and wide parameter of hole in disk is only selected as design variable for reducing the weight of steel wheel. PLBA(Pshenichny·Lim-Belegundu_arora) algorithm. which uses the second-order information in the direction finding problem and uses the active set strategy. is used for solving optimization problems.

  • PDF

Confinement evaluation of concrete-filled box-shaped steel columns

  • Susantha, K.A.S.;Ge, Hanbin;Usami, Tsutomu
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.313-328
    • /
    • 2001
  • This paper presents a three-dimensional finite element analysis methodology for a quantitative evaluation of confinement in concrete-filled box-shaped unstiffened steel columns. The confinement effects of concrete in non-circular sections can be assessed in terms of maximum average lateral pressure. A brief review of a previous method adopted for the same purpose is also presented. The previous method is based on a two-dimensional finite element analysis method involving a concrete-steel interaction model. In both the present and previous methods, average lateral pressure on concrete is computed by means of the interaction forces present at the concrete-steel interface. Subsequently, the strength enhancement of confined concrete is empirically related to the maximum average lateral pressure. The results of the former and latter methods are then compared. It is found that the results of both methods are compatible in terms of confined concrete strengths, although the interaction model yields a somewhat overestimated estimation of confinement than those of the present method when relatively high strength concrete is used. Furthermore, the confinement in rectangular-shaped sections is investigated and the reliability of previously adopted simplifications in such cases is discussed.

Dynamic Analysis of Steel Box Girder Bridge installed with Skid Proof Pavement (미끄럼방지포장을 설치한 강상자형 교량의 동적해석)

  • Park, Pyoung Deuk;Chung, Jae Hoon;Yhim, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.329-337
    • /
    • 2002
  • The skid proof pavement is used for safety driving on curved bridges and high level roads. This study analyzed the effect of skid proof pavement on the bridge using actual spot test and computer analysis. In the actual spot test, the natural frequency and dynamic deflection of steel box girder bridges were measured before and after skid proof pavement. Likewise, in the computer analysis, the dynamic response of the finite element model was evaluated. The model was based on real steel box girder bridge according to the skid proof pavement. The analyzed results provide basic data on the effect of skid proof pavement on road structure.

Impact response of steel-concrete composite panels: Experiments and FE analyses

  • Zhao, Weiyi;Guo, Quanquan;Dou, Xuqiang;Zhou, Yao;Ye, Yinghua
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.255-263
    • /
    • 2018
  • A steel-concrete composite (SC) panel typically consists of two steel faceplates and a plain concrete core. This paper investigated the impact response of SC panels through drop hammer tests and numerical simulations. The influence of the drop height, faceplate thickness, and axial compressive preload was studied. Experimental results showed that the deformation of SC panels under impact consists of local indentation and overall bending. The resistance of the panel significantly decreased after the local failure occurred. A three-dimensional finite element model was established to simulate the response of SC panels under low-velocity impact, in which the axial preload could be considered reasonably. The predicted displacements and impact force were in good agreement with the experimental results. Based on the validated model, a parametric study was conducted to further discuss the effect of the axial compressive preload.

Unit Cost Prediction Model Development for the Domestic Reinforced Bar using System Dynamics

  • Ko, Yongho;Choi, Seungho;Kim, Youngsuk;Han, Seungwoo
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.2
    • /
    • pp.13-20
    • /
    • 2013
  • Construction industry has become a larger and highly competitive industry. A successful construction project cannot be achieved only by efficient and fast construction techniques but also reasonable material cost and adequate transferring time of materials to installation. The steel industry in East Asia has become the mainstream in overall steel industries in over the world during the middle of the 21st century. China, Japan and Korea has been the main exportation countries. However, even though the international economic failure, China has increased the exportation amount and became an only exporting country which must be considered a serious problem regarding competitiveness in the international steel exportation industry. Thus, this study analyses the factors affecting the supply and demand amount of reinforced bars in the domestic field and moreover suggesting a unit cost prediction model using the System Dynamics simulation methodology, one of powerful prediction tools using cause-effect relationships. It is expected that this study contributes to the domestic steel industry growth in competitiveness in the international industry. In addition, the methodology used in this paper presents the frameworks for appropriate tools for market trend analysis and prediction of other markets.

A Study on the Flank Wear of Carbide Tool in Machining SUS304 (SUS304 절삭시 Carbide 공구의 Crater 마모에 관한 연구)

  • Jeong, Jin-Yong;O, Seok-Hyeong;Kim, Jong-Taek;Seo, Nam-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.44-54
    • /
    • 1991
  • A Study was made on falnk wear in carbide tools in turning SUS304 steel. When an austenitic stainless steel (SUS304 steel) is cut with the tool, saw-toothed chip are produced. It is found that machining SUS304 steel would make a tool worn fast. For increasing productivity, tool wear has to be predicted and controlled. An amended cutting geometry consisting of a negative rake angle ($-6^{\circ}$ ) and a high clearance angle ($-17^{\circ}$ ) is proposed for decreasing carbide tool wear (flank) in the machining of SUS304 steel. The amended cutting geometry is found to make the flank wear lower than a general cutting geometry (rake angle $6^{\circ}$ , clearance angle $5^{\circ}$). The effects of the three cutting variables (cutting speed, feed, tool radius) on the flank wear analyzed by fiting a simple first-order model containing interaction terms to each flank wear parameter by means of regression analysis and the predicted from first-order regression analysis model equation of flank wear.

  • PDF

The Properties for Structural Behavior of Beam-Column Joint Consisting of Composite Structure (혼합구조로 이루어진 보-기둥 접합부의 구조적 거동 특성)

  • Lee, Seung Jo;Park, Jung Min;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.445-455
    • /
    • 2000
  • This study proposed to beam-column joint model consisting of different type structural member to develop new structural system in the structural viewpoint as to a method to overcome various problem according to change of construction environment. This study promoted rigidity and capacity to stiffen reinforced concrete for steel structure end to increase rigidity of long spaned steel beam, and welt to steel flange to anchor U-shaped main bar of SRC structure end to easy stress flow between the different type structure. Through the series of experiments, proposed to possibility of this joint model, and investigated joint rigidity and capacity.

  • PDF

Effect of tube area on the behavior of concrete filled tubular columns

  • Gupta, P.K.;Verma, V.K.;Khaudhair, Ziyad A.;Singh, Heaven
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.141-166
    • /
    • 2015
  • In the present study, a Finite Element Model has been developed and used to study the effect of diameter to wall thickness ratio (D/t) of steel tube filled with concrete under axial loading on its behavior and load carrying capacity. The model is verified by comparing its findings with available experimental results. Influence of thickness and area of steel tube on strength, ductility, confinement and failure mode shapes has been studied. Strength enhancement factors, load factor, confinement contribution, percentage of steel and ductility index are defined and introduced for the assessment. A parametric study by varying length and thickness of tube has been carried out. Diameter of tube kept constant and equals to 140 mm while thickness has been varied between 1 mm and 6 mm. Equations were developed to find out the ultimate load and confined concrete strength of concrete. Variation of lateral confining pressure along the length of concrete cylinder was obtained and found that it varies along the length. The increase in length of tubes has a minimal effect on strength of tube but it affects the failure mode shapes. The findings indicate that optimum use of materials can be achieved by deciding the thickness of steel tube. A better ductility index can be obtained with the use of higher thickness of tube.

Numerical analysis of steel-soil composite (SSC) culvert under static loads

  • Beben, Damian;Wrzeciono, Michal
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2017
  • The paper presents a numerical analysis of a steel-soil composite (SSC) culvert in the scope of static (dead and live) loads. The Abaqus program based on the finite element method (FEM) was used for calculations. Maximum displacements were obtained in the shell crown, and the largest stresses in the haunches. Calculation results were compared with the experimental ones and previous calculations obtained from the Autodesk Robot Structural Analysis (ARSA) program. The shapes of calculated displacements and stresses are similar to those obtained with the experiment, but the absolute values were generally higher than measured ones. The relative differences of calculated and measured values were in the range of 5-23% for displacements, and 15-42% for stresses. Developed calculation model of the SSC culvert in the Abaqus program allows obtaining reasonable values of internal forces in the culvert. Using both calculation programs, the relative differences for displacements were in the range of 15-39%, and 17-44% for stresses in favour of the Abaqus program. Three design methods (Sundquist-Pettersson, Duncan and CHBDC) were used to calculate the axial thrusts and bending moments. Obtained values were compared with test results. Generally, the design methods have conservative assumptions, especially in the live loads distribution, safety factors and consideration the interaction between soil and steel structure.