• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.035 seconds

Effect of the Member Joint on Structural Performance of an Arch-type Multi-span Greenhouse: A Full-scale Experimental and Numerical Study (부재 접합부가 아치형 연동온실의 구조 성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.402-410
    • /
    • 2017
  • The effect of the steel pipe member joint on the design performance of a plastic multi-span greenhouse was analysed through the comparing full-scale experiment and numerical analysis. The design performance of the greenhouse is generally evaluated through numerical analysis, but it is rare to consider the characteristics of the connections or joints of the members. In this study, the effect of the column-gutter beam-rafter-wind break wall joint on the design performance of the whole structure of a plastic multi-span greenhouse was analysed. The numerical results with assuming that the member joint are rigid condition were compared with the full-scale load test results using member joints used in the field. The stiffness of the entire structure was compared using the load-displacement relationship and the change of the load sharing ratio that the main members such as column, rafters, and wind break wall was analysed. The results of the load test were about 40% larger than the numerical result and the member stress was more than twice as large as those of the loaded columns. In order to increase the reliability of the design performance of the greenhouse, it is necessary to develop a numerical analysis model which can consider the characteristics of various joints.

Study on Effect of Anchor Bolt by Thermal Expansion of Sulfur Storage Tank under High Temperature (고온을 받는 유황저장탱크의 열팽창에 의한 앵커볼트 영향에 관한 연구)

  • Jung, Wook-Hwan;Kim, Jeong-Soo;Kim, Tae-Min;Kim, Moon-Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.483-490
    • /
    • 2016
  • In plant industry, sulfur storage tank is made of steel and annular plate is connected with concrete foundation of ring wall type by anchor bolt. Due to keep sulfur at high temperature in tank by coil, sulfur storage tank is expanded larger than another tank stores fluid at room temperature. Generally, structural design of tank foundation is performed analysis with loading of temperature gradient between inner and outer surface, this method can't consider the phenomenon that load is intensively transferred to concrete foundation at anchor bolt. This means that temperature load is underestimated and causes crack of concrete near anchor bolt. In this study, evaluation formula considering temperature load transfer mechanism through anchor bolt is proposed and load acting on concrete foundation is rationally decided. For this purpose, it is analyzed variation of thermal load per various anchor bolt number using finite element model including tank annular plate and anchor bolt. Solution is proposed as specified term combining result of analysis and theoretical solution for evaluating load transferred by anchor bolt. For confirmation of validation of proposed formula, it is applied in design of sulfur storage tank at plant site, it shows that the formula can be practically applied.

An Optimum Slanting Angle in Reticulated Root Piles Installation under Compressive and Uplift Loads (압축 및 인발하중을 받는 그물식 뿌리말뚝의 최적 타설경사각)

  • 이승현;김명보
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-84
    • /
    • 1996
  • In order to investigate the influence of slanting angle of reticulated root piles(RRP) on their bearing capacities, model tests of compressive and uplift loads on RRP with different slanting angles, which were installed in sandy soils with a relative density of 47%, were carried out. Each pile which is made of a steel bar of 5mm in diameter and 300mm in length, is coated with sand to be 6.5mm in diameter. One set of RRP consists of 8 piles which are installed in circular patterns forming two concentric circles, each of which has 4 piles. Slanting angles of RRP for load tests are 0$^{\circ}$, 5$^{\circ}$, 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, and 25$^{\circ}$. In addition, compressive load tests on circular footing whose diameter is the same as the outer circle of RRP were carried out. Test results show that maximum load bearing capacities of RRP by regression analysis are obtained at about 12$^{\circ}$ and 13$^{\circ}$ of slanting angles for compressive and uplift load tests, respectively. Maximum compressive bearing capacity is estimated to be 13oA bigger than that of the vertical RRP and 95% bigger than that of surface footing. Maximum uplift capacity is estimated to be 21% bigger than that of the vertical RRP. And it can be appreciated that increasing the slanting angle makes the load -Settlement behavior more ductile.

  • PDF

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems (초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.875-888
    • /
    • 2013
  • The researches have recently progressed toward the use of the superelastic shape memory alloys (SMAs) to develop new smart control systems that reduce permanent deformation occurring due to severe earthquake events and that automatically recover original configuration. The superelastic SMA materials are unique metallic alloys that can return to undeformed shape without additional heat treatments only after the removal of applied loads. Once the superelastic SMA materials are thus installed at the place where large deformations are likely to intensively occur, the structural system can make the best use of recentering capabilities. Therefore, this study is intended to propose new buckling-restrained braced frames (BRBFs) with superelastic SMA bracing systems. In order to verify the performance of such bracing systems, 6-story braced frame buildings were designed in accordance with the current design specifications and then nonlinear dynamic analyses were performed at 2D frame model by using seismic hazard ground motions. Based on the analysis results, BRBFs with innovative SMA bracing systems are compared to those with conventional steel bracing systems in terms of peak and residual inter-story drifts. Finally, the analysis results show that new SMA bracing systems are very effective to reduce the residual inter-story drifts.

Dose Computation Modeling for Frustum Typed Ir-192 of Ralstron Source (Ralstron 선원대체형 Ir-192 원추선원의 선량 전산화 모델링)

  • 최태진
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.19-29
    • /
    • 2001
  • In dose modeling, the shape of actual source and sealed capsule are important parameter to determine the physical dose computation. The author investigated the effect of filter of source self-absorption and sealed capsule to designed the high dose rate Ir-192 source for Ralstron(Japan) unit. The size of source designed to 1.5 mm $\Phi$ x 1.5mm length of actual source sealed with stainless steel which is 3.0mm $\Phi$ x 12.0mm length connected to driving cable. The dose attenuation was derived 66.3 % from 2655 segmented source at reference point of 10mm lateral distance of source. The output dose rate factor in tissue for designed source showed 0.0013511 cGy/mCi-sec in reference point at 1cm lateral distance of source center. The dose distribution at inferior of source showed the 52% of that of source tip region, however, the filtering effect was small as 4% at 45degrees of source axis. The dose attenuation within 20 degrees of source axis at near source-cable connector showed large filtering effect as 40% over, but the small effect was revealed isotropic dose distribution at large angle.

  • PDF

A Study on the Mill Scale Pretreatment and Magnetite Production for Phosphate Adsorption (인 흡착을 위한 Mill Scale 전처리 및 Magnetite 제조 연구)

  • Chun, Hyuncheol;Choi, Younggyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.246-252
    • /
    • 2015
  • In steel factory, hot roller cleaning process produces a lot of iron oxide particles called as mill scale. Major components of these particles are wustite (FeO), magnetite ($Fe_3O_4$), and hematite ($Fe_2O_3$). In this study, we tried to produce pure magnetite from the mill scale because of the largest phosphate adsorption capacity of the magnetite. The mill scale was treated with acid (HCl+$H_2O_2$), base (NaOH), and acid-base ($H_2SO_4$+NaOH). Batch adsorption tests showed the acid and/or base treatment could increase the phosphate adsorption capacity of the iron oxides from 0.28 to over 3.11 mgP/g. Magnetite, which could be obtained by acid and base treatment of the mill scale, showed the best adsorption capacity. From the kinetic analysis, both Freundlich and Langmuir isotherm well described the phosphate adsorption behavior of the magnetite. In Langmuir model, maximum phosphate adsorption capacity was found to be 5.1 mgP/g at $20^{\circ}C$.

Evaluation of the Shaft Resistance of Drilled-in Steel Tubular Pile in Rock Depending on the Proportion of Annulus Grouting Material (주면고정액 배합비에 따른 암반매입 강관말뚝의 주면지지력 평가)

  • Moon, Kyoungtae;Park, Sangyeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • Foundation of tower structures such as wind turbine, pylon, and chimney have to resist considerably large overturning moment due to long distance from foundations to load point and large horizontal load. Pile foundations subjected to uplift force are needed to economically support such structure even in the case of rock layer. Therefore, this research performed the laboratory model tests with the variables, W/C ratio and sand proportion, to evaluate the effect of the mix proportion of grouting material on shaft resistance. In the case of cement paste, maximum and residual shaft resistance were distributed in uniform range irrespective of the changes of W/C ratio. However in the case of mortar, they were decreased with increasing W/C ratio, while they were increased and then decreased with increasing sand proportion. In the case of no sand, the maximum shaft resistance was about 540~560kPa regardless of the W/C ratio. When the sand proportion was 40%, it was about 770~870kPa depending on W/C ratio, which was about 40~50% higher than that without sand. The optimum proportion found in this research was around 40% of sand proportion and 80~100% of W/C ratio.

Assessment of Fatigue Life of Out-Of-Plane Gusset Welded Joints using 3D Crack Propagation Analysis (3차원 피로균열 진전해석을 통한 면외거셋 용접이음의 피로수명 평가)

  • Jeong, Young-Soo;Kainuma, Shigenobu;Ahn, Jin-Hee;Lee, Wong-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • The estimation of the fatigue design life for large welded structures is usually performed using the liner cumulative damage method such as Palmgren-Miner rule or the equivalent damage method. When a fatigue crack is detected in a welded steel structure, the residual service life has to be estimated base on S-N curve method and liner elastic fracture mechanics. In this study, to examine the 3D fatigue crack behavior and estimate the fatigue life of out-of-plane gusset fillet welded joint, the fatigue tests were carried out on the model specimens. Investigations of three-dimensional fatigue crack propagation on gusset welded joint was used the finite element analysis of FEMAP with NX NASTRAN and FRANC3D. Fatigue crack growth analysis was carried out to demonstrate the effects of aspect ratio, initial crack length and stress ratio on out-of-plane gusset welded joints. In addition, the crack behaviors of fatigue tests were compared with those of the 3D crack propagation analysis in terms of changes in crack length and aspect ratio. From this analysis result, SIFs behaviors and crack propagation rate of gusset welded joint were shown to be similar fatigue test results and the fatigue life can also be predicted.

A study on reduction of springback defects in excavator tank cover part (굴삭기 Tank Cover 부품 뒤틀림 불량 저감에 대한 연구)

  • Jeon, Yong-Jun;Lee, Ha-Sung;Kim, Dong-Earn;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.52-57
    • /
    • 2018
  • With the recent strengthening of environmental regulations and the need for cost reduction, excavators, a type of construction equipment, are being miniaturized while components are being developed in consideration of stability. In the case of excavator press parts, mainly high-strength steel sheets are being used to enhance stability and reduce weight. However, in the case of high-strength materials, there is a need to research product forming methods to reduce Springback in defects arising in parts assembly due to Springback that result from the internal residual stress that occurs in press forming being released after product forming. Accordingly, regarding the tank cover, an excavator press-forming part, this study selected a method to reduce distortion through analysis of the Springback occurrence rate and Springback causes through a forming analysis. A forming analysis was conducted for the Springback of the tank cover. Deformations of 13.714 mm in the upper part and 6.244 mm in the inner part of the product occurred, while wrinkles occurred on the sides of the product due to uneven thickness. A forming analysis was conducted for the major shapes of the product to investigate the causes of Springback. Distortion deformation due to the bead in the center of the product was confirmed to be a large factor. A Springback reduction method of correcting uneven thickness in the product sides, a Springback reduction method of removing the bead, and a correction method of restriking after the final forming were used in a forming analysis to determine the degree of Springback reduction. For the forming method to correct uneven thickness in the sides, deformation was reduced by 12% in the upper side compared to the existing model, but deformation in the inner side increased by 1%. For the restriking forming method, deformation decreased by 25% in the upper side and 13% in the inner side. For the bead removal method, deformation decreased by 28% in the upper side and 13% in the inner side, the largest Springback correction results. This indicates that the bead has a large affect on Springback.