• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.038 seconds

A MORPHOMETRIC STUDY OF THE MAXILLARY PRIMARY FIRST MOLARS USING THREE-DIMENSIONAL SCANNER (3차원 스캐너를 이용한 상악 제1유구치 치관의 크기와 형태에 관한 연구)

  • Lee, Jong-Beom;Kim, Chong-Chul;Hahn, Se-Hyun;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.4
    • /
    • pp.643-652
    • /
    • 2006
  • The purpose of this study was to elucidate the size and morphologic characteristics of maxillary primary first molars in Korean children using three-dimensional laser scanner and compare three-dimensional image with preformed stainless steel crown. Scanned three-dimensional images of dental cast taken from 132 children(male 62, female 70) by three-dimensional laser scanner(Breuckmann opto-Top HE100, INUS, Korea) were used. Mesiodistal diameter, buccolingual diameter, occlusogingival height and crown shape of each image were calculated by Rapidform 2004 program(INUS, Korea). The values were statistically compared by independent samples t-test with 95% of significant level. The results were as follows : 1. No significant difference in crown size was found between left and right maxillay primary first molar(p>0.05). 2, Significant difference in mesiodistal diameter, buccolingual diameter, buccal occlusogingival height was found between male and female (p<0.05), and crown size of male was bigger than that of female. 3. Average image of maxillay primary first molar was shaped three-dimensionally and measured. In comparison with 3M stainless steel crown, this image was similar with No.4 or No.5 SS crown in male, No.4 in female. In comparison with ILSUNG SS crown, this image was similar with No.5 in male, No.4 in female. 4 Mesiolingual line angle area, distolingual line angle area and buccogingival ridge were more obvious in average image than 3M stainless steel crown. ILSUNG SS crown was more square and had longer mesiodistal diameter than average 3D image.

  • PDF

Analytical Study on the Inelastic Behavior of Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.29-40
    • /
    • 2005
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

Characterization for Applying to Optimized Model of Flatform System Step Parts Material for Low-High Platform Railroad Vehicle (저상고상 철도차량용 승강시스템 스텝 부품 소재의 최적화 모델 적용을 위한 특성 평가)

  • Kwak, Hee-Man;Choi, Jung-Muk;Kim, Hyun-Dong;Park, Min-Heung;Kim, Chul-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1381-1388
    • /
    • 2011
  • Recently, Because of weight lighting and tighten safety regulations of the railway vehicle railroad weight lighting and safety improvement technology is internationally required. Slide step for moving the passenger to high flatform in the railroad vehicle is recognized of important parts. However, Due to high price and weight, it is limited. In this research, In order to apply for railroad, it was redesigned to optimize part count and reduce the price and weight. By choosing honeycombcore as a part for enduring high weight and weight lighting, We produce honeycombpanel of sandwich structure which a different kind connected by using existing stainless(STS304)steel and thermo plasticity glue. Finally, we can find that honeycombpanel is suitable for weight lighting and high weight. As well as, with test result, we can prove that low-high platform railway system will be optimized, if steps are applied to honeycombpanel.

  • PDF

The Development of Third-Rail System Applied to Turn-out Section for Urban Maglev (도시형 자기부상열차 분기기 구간의 제3궤조 전차선 시스템 개발)

  • Min, Byong-Chan;Heo, Young-Tae;Hong, Du-Young;Lee, Won-Joo;Jo, Su-Yeon;Jeong, Nam-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3046-3051
    • /
    • 2011
  • The third-rail system is an important device supplying power directly to the Maglev train through physical contact with the collecting shoe. It is directly related to safety and reliability for the running of Maglev. However, most the third-rail system used in Korea depend on foreign product or technologies, Korea Urban Maglev in the development of appropriate power feeding is urgent. In particular, the turnout section is the weakness point in the system because bending force by turnout section movement and fatigue caused by repetitive motion as well as the expansion by temperature, the forces by Maglev collecting shoe is added th the third-rail. Therefore, this paper proposes the third-rail system appropriate for Korean Urban Maglev of turnout section. To verify the structural stability of POSCO ICT third-rail system, the finite element analysis and physical testing was performed. The third-rail is fixed on each side of the turn-out section steel structure by epoxy insulation supporter and the integral behaviors are occurred. Therefore, the maximum horizontal displacements of each support are investigated and then, it is applied to finite element model of the third-rail to investigate the moments and stress. Also, the bending test about one million times and Expansion Joint for the third-rail was performed. The third-rail system safety and reliability was identified by test line on Korea Institute of Machinery & Materials in Deajeon for under the actual usage environment such as the Maglev and turn-out operation.

  • PDF

New Seat Design and Finite Element Analysis for Anti-Leakage of Globe Valve (글로브 밸브의 누설방지를 위한 시트 설계 및 유한요소해석)

  • Lee, Sung Ho;Kang, Gyeong Ah;Kwak, Jae-Seob;An, Ju Eun;Jin, Dong Hyun;Kim, Byung Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • The valves used to control or shut off the flow through a pipeline can be divided into many different types, including gate valves, globe valves, and check valves. Globe valves, in particular, have excellent properties, and because they can easily control the flow under high-pressure conditions, they are generally used in LNG ship and steam pipelines. In this paper, a method for changing the shape of a seat was suggested to solve the valve leakage problem from a structural perspective. In addition, the stress distribution and directional deformation were compared for each model. The suggested models were thus validated, and the optimized seat structure, which includes a self-supporting capability for decreasing the amount of leakage, was determined.

Experimental Study on Elastic Response of Circular Cross-section Slender Body to Forced Oscillation, Waves, and Current (복합 외력환경 중 원형 단면 세장체의 탄성응답에 관한 실험적 연구)

  • Park, Ji-won;Lee, Seung-Jae;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Han, Sung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • The global demand for oil and natural gas has increased, and resource development is moving to the deep sea. Floating and flexible offshore structures such as semi-submersible, spar, and FPSO structures have been widely used. The major equipment of floating structures is always exposed to waves, currents, and other marine environmental factors, which cause structural damage. Moreover, flexible risers are susceptible to an exciting force due to the motion of the floating body. The inline and transverse responses from the three-dimensional behavior of a floating structure occur because of various forces. Typical risers are made of steel pipe and applied in the oil and gas development field, but flexible materials such as polyethylene are suitable for OTEC risers. Consequently, the optimal design of a flexible offshore plant requires a dynamic behavior analysis of slender bodies made of the different materials commonly used for offshore flexible risers. In this study, a three-dimensional motion measurement device was used to analyze the displacements of riser models induced by external force factors, and forced oscillation of a riser was linked to forced oscillation under a steady flow and regular wave condition.

The Moderating Effects of Employer Trust on the Effect of Organizational Reputation (기업평판이 회사몰입과 이직의도에 미치는 영향에 관한 연구)

  • Yang, Jin-Ho;Park, Sang-Bong
    • Management & Information Systems Review
    • /
    • v.33 no.2
    • /
    • pp.1-12
    • /
    • 2014
  • The purpose of this study is to examine the the effect of organizational reputation on company commitment, turnover intention and the moderating effect of employer trust. Despite the progress of organizational reputation studies, There is a shortage of employee-perspective studies. This study considered the limitation of previous study and the help to the company. This study built a exploratory model that there is causal relationship of organizational reputatio to company commitment, turnover intention and the moderating effect of employer trust on the effect of company commitment, and turnover intention. To test hypotheses empirically, the data was collected from 239 iron and steel company's workers in Po-hang. The study showed following results. First organizational reputation had the effect on the company commitment and turnover intention significantly. a positve reputation in an organization is associate with commitment and negative reputation in an organization is associate with turnover. Second perceived employer trust played the role as the moderating variable in relation with the effect of reputation on the company commitment. The implication of these results to the union and the company, the limitation and the direction of future study were suggested.

  • PDF

Ultimate Strength of Anchorage Zone according to Geometric Parameters of Post-Tensioning Anchorage using a Finite Element Method (유한요소해석을 통한 포스트텐션 정착구 형상 변수의 정착부 극한강도 영향 분석)

  • Kwon, Yangsu;Kim, Jin-Kook;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.317-324
    • /
    • 2015
  • The design of anchorage zone in a post-tensioned member has been started from the evaluation of the ultimate resisting capacity as well as the maximum bursting stress developed, and a lot of design codes including AASHTO and PTI describe their design equations to determine the bearing strength of concrete at the anchorage zone. However, these equations usually give conservative results because their derivation is based on the simple anchorage with a wide bearing plate in the surface without any additional consideration for the load transfer mechanism through transverse ribs on the anchorage. To assess the influence of geometric parameters related to the transverse ribs on the resisting capacity of anchorage block, experiments and analysis are conducted. After verifying the validity of numerical model conducted through correlation studies between experimental and analytical results, parametric studies with changes in the transverse ribs are followed and design recommendations for the anchorage block are suggested from the numerical results obtained.

Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories

  • Attia, Amina;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.187-212
    • /
    • 2015
  • In this paper, various four variable refined plate theories are presented to analyze vibration of temperature-dependent functionally graded (FG) plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present model is reduced, significantly facilitating engineering analysis. These theories account for parabolic, sinusoidal, hyperbolic, and exponential distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Uniform, linear, nonlinear and sinusoidal thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from Hamilton's principle. Analytical solutions for the free vibration analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent and temperature-independent FG plates and validated with known results in the literature. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature fields on the vibration characteristics. It can be concluded that the present theories are not only accurate but also simple in predicting the free vibration responses of temperature-dependent FG plates.

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite

  • Zaid, Mohammad;Sadique, Md. Rehan;Alam, M. Masroor;Samanta, Manojit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.245-259
    • /
    • 2020
  • Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.