DOI QR코드

DOI QR Code

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite

  • Zaid, Mohammad (Department of Civil Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University) ;
  • Sadique, Md. Rehan (Department of Civil Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University) ;
  • Alam, M. Masroor (Department of Civil Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University) ;
  • Samanta, Manojit (CSIR-Central Building Research Institute)
  • Received : 2020.07.23
  • Accepted : 2020.10.16
  • Published : 2020.11.10

Abstract

Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.

Keywords

Acknowledgement

The first author also acknowledges the PG-GATE-201819 (ID-201819-PGGATE-10072-332) scholarship received from University Grants Commission, India, during the course of this work.

References

  1. Abaqus Documentation (2014), Dassault Systemes, Providence, Rhode Island, U.S.A.
  2. Abdollahzadeh, G. and Faghihmaleki, H. (2017), "A method to evaluate the risk-based robustness index in blast-influenced structures", Earthq. Struct., 12(1), 47-54. https://doi.org/10.12989/eas.2017.12.1.047.
  3. Ambrosini, D. and Luccioni, B.M. (2009), "Reinforced concrete wall as protection against accidental explosions in the petrochemical industry", Struct. Eng. Mech., 32(2), 213-233. https://doi.org/10.12989/sem.2009.32.2.213.
  4. Bangash, M. and Bangash, T. (2005), Explosion-Resistant Buildings: Design, Analysis, and Case Studies, Springer-Verlag Berlin Heidelberg, Heidelberg, Germany.
  5. Chaudhary, R.K., Mishra, S., Chakraborty, T. and Matsagar, V. (2019), "Vulnerability analysis of tunnel linings under blast loading", Int. J. Protect. Struct., 10(1), 73-94. https://doi.org/10.1177/2041419618789438.
  6. Chen, L., Zhou, Z., Zang, C., Zeng, L. and Zhao, Y. (2019), "Failure pattern of large-scale goaf collapse and a controlled roof caving method used in gypsum mine", Geomech. Eng., 18(4), 449-457. https://doi.org/10.12989/gae.2019.18.4.449.
  7. Chille, F., Sala, A. and Casadei, F. (1998), "Containment of blast phenomena in underground electrical power plants", Adv. Eng. Softw., 29(1), 7-12. https://doi.org/10.1016/S0965-9978(97)00047-1.
  8. Choi, S., Wang, J., Munfakh, G. and Dwyre, E. (2006), "3D nonlinear blast model analysis for underground structures", Proceedings of the GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, Atlanta, Georgia, U.S.A., February-March.
  9. DMRC (2015), Design specifications, DMRC, Barakhamba road, New Delhi, India.
  10. Dvorak, G. and Suvorov, A. (2006), "Protection of sandwich plates from low-velocity impact", J. Compos. Mater., 40(15), 1317-1331. https://doi.org/10.1177/0021998305059053.
  11. Ewing, C.M., Guillin, C., Dhakal, R.P. and Chase, J.G. (2009), "Spectral analysis of semi-actively controlled structures subjected to blast loading", Struct. Eng. Mech., 33(1), 79-93. https://doi.org/10.12989/sem.2009.33.1.079.
  12. Feldgun, V. R., Kochetkov, A.V., Karinski, Y.S. and Yankelevsky, D.Z. (2008a), "Internal blast loading in a buried lined tunnel", Int. J. Impact Eng., 35(3), 172-183. https://doi.org/10.1016/j.ijimpeng.2007.01.001.
  13. Feldgun, V., Kochetkov, A.V., Karinski, Y.S. and Yankelevsky, D.Z. (2008b), "Blast response of a lined cavity in a porous saturated soil", Int. J. Impact Eng., 35(9), 953-966. https://doi.org/10.1016/j.ijimpeng.2007.06.010.
  14. Gui, M.W. and Chien, M.C. (2006), "Blast-resistant analysis for a tunnel passing beneath Taipei Shongsan airport - A parametric study", Geotech. Geol. Eng., 24(2), 227-248. https://doi.org/10.1007/s10706-004-5723-x.
  15. Gupta, A.S. (1997), Engineering Behavior and Classification of Weathering Rock, Indian Institute of Technology Delhi, Delhi, India.
  16. Guzas, E.L. and Earls, C.J. (2010), "Air blast load generation for simulating structural response", Steel Compos. Struct., 10(5), 429-455. https://doi.org/10.12989/scs.2010.10.5.429.
  17. Hadianfard, M.A., Farahani, A. and B-Jahromi, A. (2012), "On the effect of steel columns cross sectional properties on the behaviours when subjected to blast loading", Struct. Eng. Mech., 44(4), 449-463. https://doi.org/10.12989/sem.2012.44.4.449.
  18. Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M.S.B. and Karimzade, K. (2015), "Simplified damage plasticity model for concrete", Struct. Eng. Int., 27(1), 68-78. https://doi.org/10.2749/101686616X1081.
  19. Han, Y. and Liu, H. (2016), "Failure of circular tunnel in saturated soil subjected to internal blast loading", Geomech. Eng., 11(3), 421-438. https://doi.org/10.12989/gae.2016.11.3.421.
  20. Han, Y., Zhang, L. and Yang, X. (2016a), "Soil-tunnel interaction under medium internal blast loading", Procedia Eng., 143, 403-410. https://doi.org/10.1016/j.proeng.2016.06.051.
  21. Han, Y., Zhang, L. and Yang, X. (2016b), "Soil-tunnel interaction under medium internal blast loading", Procedia Eng., 143, 403-410. https://doi.org/10.1016/j.proeng.2016.06.051.
  22. Hibbitt, D., Karlsson, B. and Sorensen, P. (2014), ABAQUS User-Manual Release 6.14., Dassault Systemes Simulia Corporation, Providence, Rhode Island, U.S.A.
  23. Higgins, W., Chakraborty, T. and Basu, D. (2012), "A high strainrate constitutive model for sand and its application in finite element analysis of tunnels subjected to blast", Int. J. Numer. Anal. Meth. Geomech., 37(15), 2590-2610. https://doi.org/10.1002/nag.2153.
  24. Hoffman, B. and Reinares, F. (2014), The Evolution of the Global Terrorist Threat: From 9/11 to Osama Bin Laden's Death, Columbia University Press, New York, U.S.A.
  25. IS 456 (2000), Plain and Reinforced Concrete - Code of Practice. New Delhi, India.
  26. Jain, P. and Chakraborty, T. (2018), "Numerical analysis of tunnel in rock with basalt fiber reinforced concrete lining subjected to internal blast load", Comput. Concrete, 21(4), 399-406. https://doi.org/10.12989/cac.2018.21.4.399.
  27. Jeon, S., Kim, T.H. and You, K.H. (2015), "Characteristics of crater formation due to explosives blasting in rock mass", Geomech. Eng., 9(3), 329-344. https://doi.org/10.12989/gae.2015.9.3.329.
  28. Jia, S., Zhao, Z., Wu, G., Wu, B. and Wen, C. (2020), "A coupled elastoplastic damage model for clayey rock and its numerical implementation and validation", Geofluids. https://doi.org/10.1155/2020/9853782.
  29. Joachim, C. and Lundermann, C. (1994), "Parameter study of underground ammunition storage magazines", U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, U.S.A.
  30. Karinski, Y.S., Feldgun, V.R. and Yankelevsky, D.Z. (2009), "Explosion-induced dynamic soil-structure interaction analysis with the coupled Godunov-variational difference approach", Int. J. Numer. Meth. Eng., 77(6), 824-851. https://doi.org/10.1002/nme.2436.
  31. Kim, D. and Park, K. (2019), "Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber", Geomech. Eng., 19(4), 361-368. https://doi.org/10.12989/gae.2019.19.4.361.
  32. Kim, S. H., Woo, H., Choi, G. and Yoon, K. (2018), "A new concept for blast hardened bulkheads with attached aluminum foam", Struct. Eng. Mech., 65(3), 243-250. https://doi.org/10.12989/sem.2018.65.3.243.
  33. Kumar, R., Choudhury, D. and Bhargava, K. (2014), "Prediction of blast-induced vibration parameters for soil sites", Int. J. Geomech., 14(3), 04014007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000355.
  34. Lane, K.S. (2019), Tunnels and underground excavations History, Methods, Uses, & Facts, Britannica. https://www.britannica.com/technology/tunnel.
  35. Larcher, M. and Casadei, F. (2010), "Explosions in complex geometries-A comparison of several approaches", Int. J. Protect. Struct., 1(2), 169-195. https://doi.org/10.1260/2041-4196.1.2.169.
  36. Lee, J. and Fenves, G. (1998), "Plastic damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  37. Lee, J.S., Ahn, S.K. and Sagong, M. (2016), "Attenuation of blast vibration in tunneling using a pre-cut discontinuity", Tunn. Undergr. Sp. Technol., 52, 30-37. https://doi.org/10.1016/j.tust.2015.11.010.
  38. Li, G.Q., Yang, T.C. and Chen, S.W. (2009), "Behavior and simplified analysis of steel-concrete composite beams subjected to localized blast loading", Struct. Eng. Mech., 32(2), 337-350. https://doi.org/10.12989/sem.2009.32.2.337.
  39. Liao, J.J. and Ma, G. (2018), "Energy absorption of the ring stiffened tubes and the application in blast wall design", Struct. Eng. Mech., 66(6), 713-727. https://doi.org/10.12989/sem.2018.66.6.713.
  40. Liu, H. (2009), "Dynamic analysis of subway structures under blast loading", Geotech. Geol. Eng., 27(6), 699-711. https://doi.org/10.1007/s10706-009-9269-9.
  41. Liu, H. (2011), "Damage of cast-iron subway tunnels under internal explosions", Proceedings of the Geo-Frontiers Congress 2011, Dallas, Texas, U.S.A., March.
  42. Lotfi, S. and Zahrai, S.M. (2018), "Blast behavior of steel infill panels with various thickness and stiffener arrangement", Struct. Eng. Mech., 65(5), 587-600. https://doi.org/10.12989/sem.2018.65.5.587.
  43. Lu, Y., Wang, Z. and Chong, K. (2005), "A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations", Soil Dyn. Earthq. Eng., 25(4), 275-288. https://doi.org/10.1016/j.soildyn.2005.02.007.
  44. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plasticdamage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  45. Ma, G., Hao, H. and Zhou, Y.X. (1998), "Modeling of wave propagation induced by underground explosion", Comput. Geotech., 22(3-4), 283-303. https://doi.org/10.1016/S0266-352X(98)00011-1
  46. Ma, G.W., Huang, X. and Li, J.C. (2009), "Damage assessment for buried structures against internal blast load", Struct. Eng. Mech., 32(2), 301-320. https://doi.org/10.12989/sem.2009.32.2.301.
  47. Mazek, S.A. (2014), "Performance of sandwich structure strengthened by pyramid cover under blast effect", Struct. Eng. Mech., 50(4), 471-486. https://doi.org/10.12989/sem.2014.50.4.471.
  48. Naqvi, M.W., Akhtar, M.F., Zaid, M. and Sadique, M.R. (2020), "Effect of superstructure on the stability of underground tunnels", Transp. Infrastruct. Geotechnol., 1-20. https://doi.org/10.1007/s40515-020-00119-6.
  49. Ozacar, V. (2018), "New methodology to prevent blasting damages for shallow tunnel", Geomech. Eng., 15(6), 1227-1236. https://doi.org/10.12989/gae.2018.15.6.1227.
  50. Park, J.Y. and Krauthammer, T. (2009), "Inelastic two-degree-offreedom model for roof frame under airblast loading", Struct. Eng. Mech., 32(2), 321-335. https://doi.org/10.12989/sem.2009.32.2.321.
  51. Richemond-Barak, D. (2017), Underground Warfare, Oxford University Press.
  52. Rizvi, Z.H., Khan, M.A., Sembdner, K. and Husain, S.F. (2018), "Numerical modelling of crack wave interaction with BEM", Materials Today Proceedings, 28253-28261. https://doi.org/10.1016/j.matpr.2018.10.070.
  53. Singh, B. and Goel, R.K. (1999), Rock Mass Classification, A Practical Approach in Civil Engineering, 1st Edition, Elsevier.
  54. Sohn, J.M., Kim, S.J., Seong, D.J., Kim, B.J., Ha, Y.C., Seo, J.K. and Paik, J.K. (2014), "Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions", Struct. Eng. Mech., 51(5), 755-771. https://doi.org/10.12989/sem.2014.51.5.755.
  55. Song, Z.P., Li, S.H., Wang, J.B., Sun, Z.Y., Liu, J. and Chang, Y.Z. (2018), "Determination of equivalent blasting load considering millisecond delay effect", Geomech. Eng., 15(2), 745-754. https://doi.org/10.12989/gae.2018.15.2.745.
  56. Uyar, G.H., and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545.
  57. Verma, H. K., Samadhiya, N.K., Singh, M., Goel, R.K. and Singh, P.K. (2018), "Blast induced rock mass damage around tunnels", Tunn. Undergr. Sp. Technol., 71, 149-158. https://doi.org/10.1016/j.tust.2017.08.019.
  58. Wu, C., Lu, Y. and Hao, H. (2004), "Numerical prediction of blastinduced stress wave from large-scale underground explosion", Int. J. Numer. Anal. Meth. Geomech., 28(1), 93-109. https://doi.org/10.1002/nag.328.
  59. Wu, Y.K., Hao. H., Zhou, Y.X. and Chong, K. (1998), "Propagation characteristics of blast-induced shock waves in a jointed rock mass", Soil Dyn. Earthq. Eng., 17(6), 407-412. https://doi.org/10.1016/S0267-7261(98)00030-X.
  60. Xu, L., Schreyer, H. and Sulsky, D. (2015), "Blast-induced rock fracture near a tunnel", Int. J. Numer. Anal. Meth. Geomech., 39(1), 23-50. https://doi.org/10.1002/nag.2294.
  61. Yadav, H.R. (2005), "Geotechnical evaluation and analysis of Delhi metro tunnels", Ph.D. Thesis, Indian Institute of Technology Delhi, New Delhi, India.
  62. Yang, Y., Xie, X. and Wang, R. (2010), "Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion", J. Rock Mech. Geotech. Eng., 2(4), 373-384. https://doi.org/10.3724/SP.J.1235.2010.00373.
  63. Zaid, M. and Sadique, M.R. (2020a), "The response of rock tunnel when subjected to blast loading: Finite element analysis", Eng. Reports, e12293. https://doi.org/10.1002/eng2.12293
  64. Zaid, M. and Sadique, M.R. (2020b), "Blast resistant behaviour of tunnels in sedimentary rocks", Int. J. Protect. Struct., 204141962095121. https://doi.org/10.1177/2041419620951211.
  65. Zaid, M., Mishra, S. and Rao, K.S. (2020), Finite Element Analysis of Static Loading on Urban Tunnels, in Geotechnical Characterization and Modelling, Springer, Singapore, 807-823.
  66. Zhao, C.F. and Chen, J.Y. (2013), "Damage mechanism and mode of square reinforced concrete slab subjected to blast loading", Theor. Appl. Fract. Mech., 63-64, 54-62. https://doi.org/10.1016/j.tafmec.2013.03.006.

Cited by

  1. Effect of unconfined compressive strength of rock on dynamic response of shallow unlined tunnel vol.2, pp.12, 2020, https://doi.org/10.1007/s42452-020-03876-8
  2. Three-dimensional finite element analysis of urban rock tunnel under static loading condition: Effect of the rock weathering vol.25, pp.2, 2020, https://doi.org/10.12989/gae.2021.25.2.099
  3. Seismic Behaviour of Double Arched Tunnel: A Review vol.796, pp.1, 2020, https://doi.org/10.1088/1755-1315/796/1/012043
  4. Response of Twin Transportation Tunnel in Earthquake Loading: A Review vol.796, pp.1, 2020, https://doi.org/10.1088/1755-1315/796/1/012044