• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.031 seconds

Performance Evaluation of Underground Pipe with In-Situ Recycled Controlled Low Strength Materials (현장발생토사 재활용 유동성채움재를 이용한 지하매설관의 거동평가)

  • Lee Kwan-Ho;Song Chang-Seob
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.1-12
    • /
    • 2006
  • An existing Steel pipe, Cast iron pipe and Concrete pipe is can not escaped from aging, specially Metal tube is causing many problems that the quality of water worse is concerned about many rust and mike efficient use of preservation of water. The use of Glassfiber Reinforced Plastic Pipe(GRP PIPE) should be one of the possible scheme to get over these problems. The GRP PIPE has an excellent resistance power and the life is lasting from 50 to 100 years roughly. It's to be useful as a result of high durability and a good construction work also it is a light weight therefore can be expected to short the time of construction and man power. In this research, to executed the small-scaled model test, in-situ model test using CLSM of in-situ soil and to evaluated the stress - strain of the pipe also try to estimated how useful is. From the model test in laboratory, the vertical and horizontal deformation of the GRP PIPE measured in six instance using 200mm and 300mm in diameters. The value of experimentation, theory, analysis got the same results of the test, but the vertical and horizontal deformation gauged in small and the earth pressure was almost zero using CLSM of in-situ soil..

  • PDF

STRESS DISTRIBUTION OF ENDODONTICALLY TREATED MAXILLARY SECOND PREMOLARS RESTORED WITH DIFFERENT METHODS: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (상이한 방법으로 수복한 근관치료된 상악 제2소구치의 응력분포: 3차원 유한요소법적 분석)

  • Lim, Dong-Yeol;Kim, Hyeon-Cheol;Hur, Bock;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.69-79
    • /
    • 2009
  • The purpose of this study was to evaluate the influence of elastic modulus of restorative materials and the number of interfaces of post and core systems on the stress distribution of three differently restored endodontically treated maxillary second premolars using 3D FE analysis. Model 1, 2 was restored with a stainless steel or glass fiber post and direct composite resin. A PFG or a sintered alumina crown was considered. Model 3 was restored by EndoCrown. An oblique 500 N was applied on the buccal (Load A) and palatal (Load B) cusp. The von Mises stresses in the coronal and root structure of each model were analyzed using ANSYS. The elastic modulus of the definitive restorations rather than the type of post and core system was the primary factor that influenced the stress distribution of endodontically treated maxillary premolars. The stress concentration at the coronal structure could be lowered through the use of definitive restoration of high elastic modulus. The stress concentration at the root structure could be lowered through the use of definitive restoration of low elastic modulus.

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-256
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Attack Capability Analysis for Securing Self-Survival of Air Defense Weapons (대공방어무기의 자기생존성 확보를 위한 공격능력분석)

  • Kim, Sea Ill;Shin, Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.3
    • /
    • pp.11-17
    • /
    • 2021
  • The 30mm anti-aircraft gun has been developed with various types of weapon systems such as protective, protective complex, and wheel-type anti-aircraft artillery. The role of this anti-aircraft gun is an important anti-aircraft weapon in charge of air defense. Anti-aircraft weapons are tasked with defending the airspace from aircraft attacks. In particular, anti-aircraft weapons are organized in combination with mechanized units. And anti-aircraft weapons are prone to attack by enemies because they operate on the front lines of the battlefield. The enemy is expected to attack our troops by covering up or concealing as much as possible in order to increase their viability. Therefore, this study analyzed whether our 30mm anti-aircraft bullets could subdue the enemy in cover. This study analyzed the performance of 30mm anti-aircraft bullets using the M&S technique. For this study, live shooting and simulation method by M&S were used for the experiment. In this study, steel plate and plywood were used for the live shooting experiment. In addition, in the simulation process through M&S, this study used the PRODAS model, AUTODYN model, and Split-x model to analyze the trajectory, penetration, and fragmentation capability of 30mm anti-aircraft bullets. According to the experimental results, it has been proven that 30mm anti-aircraft bullets can destroy enemy armored vehicles. 30mm anti-aircraft bullets succeeded in quickly subduing enemies concealed in general buildings or forests. In this way, it was possible to minimize damage to allies in advance.

Review of Research on Chloride-Induced Stress Corrosion Cracking of Dry Storage Canisters in the United States (미국의 건식저장 캐니스터에서의 CISCC 연구에 대한 검토)

  • Park, Hyoung-Gyu;Park, Kwang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.455-472
    • /
    • 2018
  • It is important to study how to manage dry storage casks of spent nuclear fuels (SNF), because wet storage spaces for SNF will shortly be at full capacity in the Republic of Korea. The US has operated a dry storage cask system for several decades, and has carried out significant studies into how to successfully manage dry storage cask for SNF. This type of expertise and experience is currently lacking in the Republic of Korea. The degradation of dry casks is an important issue that must be considered. In particular, chloride-induced stress corrosion cracking (CISCC) is known to lead to the release of radioisotopes from canisters. The U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and the Electric Power Research Institute have undertaken research into the CISCC mechanism. In addition, Sandia National Laboratories (SNL) has extensively researched CISCC and how to manage it in dry storage canisters. In this review paper, the probabilistic model proposed by the SNL is analyzed and, based on this model, US-based CISCC research is reviewed in detail. This paper will inform the management of dry cask storage of SNF from light water reactors in austenite stainless steel canisters in the Republic of Korea.

Numerical Analysis of Hinge Joints in Modular Structures Based on the Finite Element Analysis of Joints (접합부 유한요소해석을 바탕으로 한 모듈러 구조물의 힌지접합부 수치해석적 연구)

  • Kim, Moon-Chan;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper introduces research on the hinge joint of modular structure joints using finite element analysis. The modular structure has a characteristic in that it is difficult to expect the integrity of columns and beams between unit modules because the construction is carried out such that the modules are stacked. However, the current modular design ignores these structural characteristics, considers the moment transmission for the lateral force, and analyzes it in the same manner as the existing steel structure. Moreover, to fasten the moment bonding, bolts are fastened outside and inside the module, resulting in an unreasonable situation in which the finish is added after assembly. To consider the characteristics that are difficult to expect, such as unity, a modular structure system using hinge joints was proposed. This paper proposed and reviewed the basic theory of joints by devising a modified scissors model that is modified from the scissors model used in other research to verify the transmission of load when changing from the existing moment junction to a hinge junction. Based on the basics, the results were verified by comparing them with Midas Gen, a structural analysis program. Additionally, the member strength and usability were reviewed by changing the modular structure designed as a moment joint to a hinge joint.

Flow Safety Assessment by CFD Analysis in One-Touch Insertion Type Pipe Joint for Refrigerant (CFD 해석을 이용한 냉매용 원터치 삽입식 파이프 조인트의 유동 안전성 평가)

  • Kim, Eun-young;Park, Dong-sam
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.550-559
    • /
    • 2022
  • Purpose: Pipes are widely used as applied devices in many industrial fields such as machinery, electronics, electricity, and plants, and are also widely used in safety-related fields such as firefighting and chemistry. With the diversification of products, the importance of technology in the piping field is also increasing. In particular, when changing the existing copper pipe to stainless steel, it is necessary to evaluate safety and flow characteristics through structural analysis or flow analysis. Method: This study investigated the safety by flow analysis of the 6.35 inch socket model, which are integrated insert type connectors developed by a company, using CFD analysis technique. For CDF analysis, RAN model and LES model are used. Result: As results of the analysis, amplitude of the pressure fluctuation acting on the wall of the piping system is formed at a level of 3,780 Pa or less, which is a very small level of pressure compared with the operating pressure or design stress of the refrigerant piping. Conclusion: These results mean that the effect of vibration caused by turbulence on the structural safety of the pipe is negligible.

Longitudinal arching effect of an under-passing tunnel on the existing tunnel undergoing a load of upper structures (상부 구조물 하중의 영향을 받는 기존터널에 직각 교차하는 하부 터널의 종방향 아칭효과)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.417-427
    • /
    • 2010
  • In the ease that a new cross tunnel is constructed under the existing tunnel, development of a longitudinal arching would be influenced by the existing tunnel. But it is not enough to investigate. Especially, the influence of the structure loads on the ground surface on the new tunnel, which the under-passes existing tunnel has been rarely studied. This study, therefore, aimed to clarify the effect of the existing tunnel and the structure on the ground surface on the development of a longitudinal ground arching during the excavation of a cross tunnel under the existing tunnel. Two-dimensional model tests were carried out in the test box, whose dimension was 30 cm (wide) ${\times}$ 113 cm (deep) ${\times}$ 87 cm (high). The existing tunnel was made of S21 steel tube in 16 cm diameter and 1 mm thickness. The ground surface load was 4.9 kPa and was loaded on the model structure in the size with 30 cm width ${\times}$ 16 cm height. New tunnel was excavated in 250 mm height by a bench cut method. As results, the longitudinal arching would be developed but it was severely influenced by not only the existing upper tunnel but also the ground surface load. The influence of the ground surface load on the development of longitudinal ground arching around a new tunnel showed the highest value when the tunnel face located direct under the surface load.

Analysis of Regional Economic Ripple Effects of Port Logistics Industry in Gwangyang City - Focusing on Exogenous Specified Input-Output Model - (광양시 항만물류산업의 지역경제 파급효과 분석 - 외생화 산업연관모형을 중심으로 -)

  • Kim, Min-Seong;Na, Ju-Mong
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.2
    • /
    • pp.77-95
    • /
    • 2023
  • The regional infrastructure industries of Gwangyang City, the subject of this study, are Gwangyang Port and Gwangyang Steel Mill. Therefore, it is necessary to analyze the regional economic ripple effects of the port logistics industry in Gwangyang City. In this study, a multi-stage approach using the RW and the LQ methodology using the national input-output tables in 2015 and 2019 is used to prepare the regional interindustry analysis chart in Gwangyang City, and an exogenous demand induction model that reclassified the port logistics industry was applied. Through this, the purpose of this study was to provide policy implications by figuring out the regional economic ripple effects of the port logistics industry quantitatively in Gwangyang City. As a result of the analysis, the industries with high production inducement effect and forward/backward linkage effect of the port logistics industry in Gwangyang City were analyzed as manufacturing, transportation, land and air logistics sectors. And the industries in which the added value inducement effect and the employment inducement effect were analyzed as an industry related to the service industry. Therefore, it is necessary to prepare support measures to foster the port logistics industry as a way to promote these industries and revitalize the local economy of Gwangyang City. To this end, it is desirable to improve policies and systems for the vitalization of the Gwangyang port maritime cluster and provide various policy support for the port logistics industry in Gwangyang City. This study is meaningful in suggesting policy implications for the regional economy of Gwangyang City based on the results of exogenous analysis of the port logistics industry in small and medium-sized cities. However, It seems that further studies related to this will be needed in the future.

Experimental and analytical study of squat walls with alternative detailing

  • Leonardo M. Massone;Cristhofer N. Letelier;Cristobal F. Soto;Felipe A. Yanez;Fabian R. Rojas
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2024
  • In squat reinforced concrete walls, the displacement capacity for lateral deformation is low and the ability to resist the axial load can quickly be lost, generating collapse. This work consists of testing two squat reinforced concrete walls. One of the specimens is built with conventional detailing of reinforced concrete walls, while the second specimen is built applying an alternative design, including stirrups along the diagonal of the wall to improve its ductility. This solution differs from the detailing of beams or coupling elements that suggest building elements equivalent to columns located diagonally in the element. The dimensions of both specimens correspond to a wall with a low aspect ratio (1:1), where the height and length of the specimen are 1.4 m, with a thickness of 120 mm. The alternative wall included stirrups placed diagonally covering approximately 25% of the diagonal strut of the wall with alternative detailing. The walls were tested under a constant axial load of 0.1f'cAg and a cyclic lateral displacement was applied in the upper part of the wall. The results indicate that the lateral strength is almost identical between both specimens. On the other hand, the lateral displacement capacity increased by 25% with the alternative detailing, but it was also able to maintain the 3 complete hysteretic cycles up to a drift of 2.5%, reaching longitudinal reinforcement fracture, while the base specimen only reached the first cycle of 2% with rapid degradation due to failure of the diagonal compression strut. The alternative design also allows 46% more energy dissipation than the conventional design. A model was used to capture the global response, correctly representing the observed behavior. A parametric study with the model, varying the reinforcement amount and aspect ratio, was performed, indicating that the effectiveness of the alternative detailing can double de drift capacity for the case with a low aspect ratio (1.1) and a large longitudinal steel amount (1% in the web, 5% in the boundary), which decreases with lower amounts of longitudinal reinforcement and with the increment of aspect ratio, indicating that the alternative detailing approach is reasonable for walls with an aspect ratio up to 2, especially if the amount of longitudinal reinforcement is high.